Spaces:
Sleeping
Sleeping
File size: 10,007 Bytes
1be66cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import os
from dotenv import load_dotenv
from transformers import pipeline
import pandas as pd
#from langchain_openai import ChatOpenAI
import praw
from datetime import datetime
import numpy as np
#from tavily import TavilyClient
load_dotenv()
#TAVILY_API_KEY = os.environ["TAVILY_API_KEY"]
# def fetch_news(topic):
# """ Fetches news articles within a specified date range.
# Args:
# - topic (str): Topic of interest
# Returns:
# - list: A list of dictionaries containing news. """
# load_dotenv()
# days_to_fetch_news = os.environ["DAYS_TO_FETCH_NEWS"]
# googlenews = GoogleNews()
# googlenews.set_period(days_to_fetch_news)
# googlenews.get_news(topic)
# news_json=googlenews.get_texts()
# urls=googlenews.get_links()
# no_of_news_articles_to_fetch = os.environ["NO_OF_NEWS_ARTICLES_TO_FETCH"]
# news_article_list = []
# counter = 0
# for article in news_json:
# if(counter >= int(no_of_news_articles_to_fetch)):
# break
# relevant_info = {
# 'News_Article': article,
# 'URL': urls[counter]
# }
# news_article_list.append(relevant_info)
# counter+=1
# return news_article_list
def fetch_tavily_news(topic):
""" Fetches news articles.
Args:
- topic (str): Topic of interest
Returns:
- list: A list of dictionaries containing news. """
# Step 1. Instantiating your TavilyClient
tavily_client = TavilyClient(api_key=TAVILY_API_KEY)
#response = tavily_client.search(topic)
# Step 2.1. Executing a context search query
answer = tavily_client.get_search_context(query=f"Give me news on {topic}")
line=[]
tavily_news=[]
for i in range(len(answer.split("url")))[1:]:
https_link=(answer.split("url")[i].split("\\\\\\")[2]).split('"')[1]
topic_answer=answer.split("url")[i].split("\\\\\\")[-3]
tavily_news=np.append(tavily_news,{'https':https_link,'topic_answer':topic_answer})
return tavily_news
def fetch_reddit_news(topic):
load_dotenv()
REDDIT_USER_AGENT= os.environ["REDDIT_USER_AGENT"]
REDDIT_CLIENT_ID= os.environ["REDDIT_CLIENT_ID"]
REDDIT_CLIENT_SECRET= os.environ["REDDIT_CLIENT_SECRET"]
#https://medium.com/geekculture/a-complete-guide-to-web-scraping-reddit-with-python-16e292317a52
user_agent = REDDIT_USER_AGENT
reddit = praw.Reddit (
client_id= REDDIT_CLIENT_ID,
client_secret= REDDIT_CLIENT_SECRET,
user_agent=user_agent
)
headlines = set ( )
for submission in reddit.subreddit('nova').search('job',time_filter='day'):
headlines.add(submission.title + ', Date: ' +datetime.utcfromtimestamp(int(submission.created_utc)).strftime('%Y-%m-%d %H:%M:%S') + ', URL:' +submission.url)
for submission in reddit.subreddit('fednews').search('labor',time_filter='day'):
headlines.add(submission.title + ', Date: ' +datetime.utcfromtimestamp(int(submission.created_utc)).strftime('%Y-%m-%d %H:%M:%S') + ', URL:' +submission.url)
for submission in reddit.subreddit('fednews').search('job',time_filter='day'):
headlines.add(submission.title + ', Date: ' +datetime.utcfromtimestamp(int(submission.created_utc)).strftime('%Y-%m-%d %H:%M:%S') + ', URL:' +submission.url)
for submission in reddit.subreddit('fednews').search('employment',time_filter='day'):
headlines.add(submission.title + ', Date: ' +datetime.utcfromtimestamp(int(submission.created_utc)).strftime('%Y-%m-%d %H:%M:%S') + ', URL:' +submission.url)
for submission in reddit.subreddit('fednews').search('layoff',time_filter='day'):
headlines.add(submission.title + ', Date: ' +datetime.utcfromtimestamp(int(submission.created_utc)).strftime('%Y-%m-%d %H:%M:%S') + ', URL:' +submission.url)
for submission in reddit.subreddit('washingtondc').search('job',time_filter='day'):
headlines.add(submission.title + ', Date: ' +datetime.utcfromtimestamp(int(submission.created_utc)).strftime('%Y-%m-%d %H:%M:%S') + ', URL:' +submission.url)
#if len(headlines)<10:
# for submission in reddit.subreddit('washingtondc').search(topic,time_filter='year'):
# headlines.add(submission.title + ', Date: ' +datetime.utcfromtimestamp(int(submission.created_utc)).strftime('%Y-%m-%d %H:%M:%S') + ', URL:' +submission.url)
#if len(headlines)<10:
# for submission in reddit.subreddit('washingtondc').search(topic): #,time_filter='week'):
# headlines.add(submission.title + ', Date: ' +datetime.utcfromtimestamp(int(submission.created_utc)).strftime('%Y-%m-%d %H:%M:%S') + ', URL:' +submission.url)
return headlines
def analyze_sentiment(article):
"""
Analyzes the sentiment of a given news article.
Args:
- news_article (dict): Dictionary containing 'summary', 'headline', and 'created_at' keys.
Returns:
- dict: A dictionary containing sentiment analysis results.
"""
#Analyze sentiment using default model
#classifier = pipeline('sentiment-analysis')
#Analyze sentiment using specific model
classifier = pipeline(model='tabularisai/robust-sentiment-analysis') #mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis')
sentiment_result = classifier(str(article))
analysis_result = {
'News_Article': article,
'Sentiment': sentiment_result
}
return analysis_result
# def generate_summary_of_sentiment(sentiment_analysis_results): #, dominant_sentiment):
# news_article_sentiment = str(sentiment_analysis_results)
# print("News article sentiment : " + news_article_sentiment)
# OPENAI_API_KEY = os.environ["OPENAI_API_KEY"]
# model = ChatOpenAI(
# model="gpt-4o",
# temperature=0,
# max_tokens=None,
# timeout=None,
# max_retries=2,
# api_key=OPENAI_API_KEY, # if you prefer to pass api key in directly instaed of using env vars
# # base_url="...",
# # organization="...",
# # other params...
# )
# messages=[
# {"role": "system", "content": "You are a helpful assistant that looks at all news articles with their sentiment, hyperlink and date in front of the article text, the articles MUST be ordered by date!, and generate a summary rationalizing dominant sentiment. At the end of the summary, add URL links with dates for all the articles in the markdown format for streamlit. Make sure the articles as well as the links are ordered descending by Date!!!!!!! Example of adding the URLs: The Check out the links: [link](%s) % url, 2024-03-01. "},
# {"role": "user", "content": f"News articles and their sentiments: {news_article_sentiment}"} #, and dominant sentiment is: {dominant_sentiment}"}
# ]
# response = model.invoke(messages)
# summary = response.content
# print ("+++++++++++++++++++++++++++++++++++++++++++++++")
# print(summary)
# print ("+++++++++++++++++++++++++++++++++++++++++++++++")
# return summary
# def plot_sentiment_graph(sentiment_analysis_results):
# """
# Plots a sentiment analysis graph
# Args:
# - sentiment_analysis_result): (dict): Dictionary containing 'Review Title : Summary', 'Rating', and 'Sentiment' keys.
# Returns:
# - dict: A dictionary containing sentiment analysis results.
# """
# df = pd.DataFrame(sentiment_analysis_results)
# print(df)
# #Group by Rating, sentiment value count
# grouped = df['Sentiment'].value_counts()
# sentiment_counts = df['Sentiment'].value_counts()
# # Plotting pie chart
# # fig = plt.figure(figsize=(5, 3))
# # plt.pie(sentiment_counts, labels=sentiment_counts.index, autopct='%1.1f%%', startangle=140)
# # plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
# #Open below when u running this program locally and c
# #plt.show()
# return sentiment_counts
# def get_dominant_sentiment (sentiment_analysis_results):
# """
# Returns overall sentiment, negative or positive or neutral depending on the count of negative sentiment vs positive sentiment
# Args:
# - sentiment_analysis_result): (dict): Dictionary containing 'summary', 'headline', and 'created_at' keys.
# Returns:
# - dict: A dictionary containing sentiment analysis results.
# """
# df = pd.DataFrame(sentiment_analysis_results)
# # Group by the 'sentiment' column and count the occurrences of each sentiment value
# print(df)
# print(df['Sentiment'])
# sentiment_counts = df['Sentiment'].value_counts().reset_index()
# sentiment_counts.columns = ['sentiment', 'count']
# print(sentiment_counts)
# # Find the sentiment with the highest count
# dominant_sentiment = sentiment_counts.loc[sentiment_counts['count'].idxmax()]
# return dominant_sentiment['sentiment']
# #starting point of the program
# if __name__ == '__main__':
# #fetch news
# news_articles = fetch_news('AAPL')
# analysis_results = []
# #Perform sentiment analysis for each product review
# for article in news_articles:
# sentiment_analysis_result = analyze_sentiment(article['News_Article'])
# # Display sentiment analysis results
# print(f'News Article: {sentiment_analysis_result["News_Article"]} : Sentiment: {sentiment_analysis_result["Sentiment"]}', '\n')
# result = {
# 'News_Article': sentiment_analysis_result["News_Article"],
# 'Sentiment': sentiment_analysis_result["Sentiment"][0]['label']
# }
# analysis_results.append(result)
# #Graph dominant sentiment based on sentiment analysis data of reviews
# dominant_sentiment = get_dominant_sentiment(analysis_results)
# print(dominant_sentiment)
# #Plot graph
# plot_sentiment_graph(analysis_results)
|