KasugaiSakura's picture
Add cuda device check
8dd85c3 verified
raw
history blame
13 kB
import argparse
import os
import shutil
import subprocess
import sys
import tempfile
from functools import partial
import gradio as gr
import librosa
import numpy as np
import soundfile
import torch
from edgetts.tts_voices import SUPPORTED_LANGUAGES
from inference.infer_tool import Svc
MAXOCTAVE = 2
TEMPDIR = None
def generate_tempfile(suffix=None, prefix=None):
global TEMPDIR
_, filepath = tempfile.mkstemp(suffix=suffix, prefix=prefix, dir=TEMPDIR)
return filepath
def find_sovits_model(dirpath):
for filename in os.listdir(dirpath):
if filename.endswith(".pth"):
return os.path.join(dirpath, filename)
return None
def find_diffusion_model(dirpath):
for filename in os.listdir(dirpath):
if filename.startswith("model") and filename.endswith(".pt"):
return os.path.join(dirpath, filename)
return None
def find_static_file(dirpath, filename):
filepath = os.path.join(dirpath, filename)
return filepath if os.path.exists(filepath) else None
def model_fn(modeldir, model, leakctrl, diffonly, enhancer):
if model is not None:
model.unload_model()
# locate trained models
sovits_model_path = find_sovits_model(modeldir)
sovits_config_path = find_static_file(modeldir, "config.json")
diffusion_model_path = find_diffusion_model(modeldir)
diffusion_config_path = find_static_file(modeldir, "config.yaml")
kmeans_model_path = find_static_file(modeldir, "kmeans_10000.pt")
feature_index_path = find_static_file(modeldir, "feature_and_index.pkl")
feature_retrieval = leakctrl == "Feature retrieval"
cluster_model_path = feature_index_path if feature_retrieval else kmeans_model_path
model = Svc(
sovits_model_path,
sovits_config_path,
cluster_model_path=cluster_model_path,
feature_retrieval=feature_retrieval,
diffusion_model_path=diffusion_model_path,
diffusion_config_path=diffusion_config_path,
shallow_diffusion=True,
only_diffusion=diffonly,
nsf_hifigan_enhance=enhancer,
)
speakers = list(model.spk2id.keys())
return (
model,
"Reload Model",
f"Successfully loaded model into device {str(model.dev)}",
gr.Dropdown(choices=speakers, value=speakers[0]),
)
def preset_fn(preset):
if preset == "Singing":
f0_predictor = "none"
leakctrl_ratio = 0.5
else:
f0_predictor = "rmvpe"
leakctrl_ratio = 0
"""
f0_predictor, pitch_shift, leakctrl_ratio, diff_steps, noise_scale,
silent_padding, db_threshold, auto_clip, clip_overlap, cross_fade,
adaptive_key, crepe_f0, loudness_ratio, reencode_audio,
"""
return (
f0_predictor, 0, leakctrl_ratio, 100, 0.4,
0.5, -40, 0, 0, 0.75,
0, 0.05, 0, False,
)
def tts_fn(text, gender, lang, rate, volume):
def to_percent(x):
return f"+{int(x * 100)}%" if x >= 0 else f"{int(x * 100)}%"
rate = to_percent(rate)
volume = to_percent(volume)
outfile = generate_tempfile(suffix=".wav")
subprocess.run([sys.executable, "edgetts/tts.py", text, lang, rate, volume, gender, outfile])
result, orig_sr = librosa.load(outfile)
os.remove(outfile)
target_sr = 44100
resampled = librosa.resample(result, orig_sr=orig_sr, target_sr=target_sr)
return target_sr, resampled
def inference_fn(
model, speaker, input_audio,
f0_predictor, pitch_shift, leakctrl_ratio, diff_steps, noise_scale,
silent_padding, db_threshold, auto_clip, clip_overlap, cross_fade,
adaptive_key, crepe_f0, loudness_ratio, reencode_audio,
):
if model is None:
return "Error: please load model first", None
if input_audio is None:
return "Error: please upload an audio", None
sample_rate, audio = input_audio
if np.issubdtype(audio.dtype, np.integer):
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio.transpose(1, 0))
infile = generate_tempfile(suffix=".wav")
soundfile.write(infile, audio, sample_rate, format="wav")
result = model.slice_inference(
infile,
speaker,
pitch_shift,
db_threshold,
leakctrl_ratio,
f0_predictor != "none",
noise_scale,
pad_seconds=silent_padding,
clip_seconds=auto_clip,
lg_num=clip_overlap,
lgr_num=cross_fade,
f0_predictor="crepe" if f0_predictor == "none" else f0_predictor,
enhancer_adaptive_key=adaptive_key,
cr_threshold=crepe_f0,
k_step=diff_steps,
use_spk_mix=False,
second_encoding=reencode_audio,
loudness_envelope_adjustment=loudness_ratio,
)
model.clear_empty()
os.remove(infile)
# gr.Audio force normalize the audio if supplied as a numpy array
# we must write to a temporary file and return the filepath here
prefix = f"{speaker}_{f0_predictor}_pitch{pitch_shift}_timbre{leakctrl_ratio}_diff{diff_steps}_"
outfile = generate_tempfile(suffix=".wav", prefix=prefix)
soundfile.write(outfile, result, model.target_sample, format="wav")
return "Success", outfile
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="so-vits-svc WebUI")
parser.add_argument("-m", "--model", default="./trained")
parser.add_argument("-t", "--temp", default="./workspace")
args = parser.parse_args()
print(f"Is CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
shutil.rmtree(args.temp, ignore_errors=True)
os.makedirs(args.temp, exist_ok=True)
TEMPDIR = args.temp
with gr.Blocks() as app:
with gr.Row():
with gr.Column():
title = gr.Markdown(value="""# AI Sora Singing Voice Conversion""")
with gr.Column():
with gr.Accordion(label="About", open=False):
about = gr.Markdown(value="""Space by [KasugaiSakura](https://huggingface.co/KasugaiSakura)<br/>Based on a modified version of [so-vits-svc](https://github.com/meimisaki/so-vits-svc/tree/4.1-Stable)<br/>Voice copyright belongs to [CUFFS/Sphere](https://www.cuffs.co.jp/)""")
with gr.Row():
with gr.Column():
with gr.Accordion(label="Model setup", open=True):
leakctrl = gr.Radio(
label="Timbre leakage control method",
choices=["Feature retrieval", "K-means clustering"],
value="Feature retrieval",
)
diffonly = gr.Checkbox(label="Diffusion only mode")
enhancer = gr.Checkbox(label="NSF-HiFiGAN enhancer (not recommended)")
modelptr = gr.State(None)
modelbtn = gr.Button(value="Load Model", variant="primary")
modelmsg = gr.Textbox(label="Model info")
speaker = gr.Dropdown(label="Speaker", interactive=True)
with gr.Accordion(label="Text to speech", open=False):
tts_text = gr.Textbox(label="Text", placeholder="Enter text here")
tts_gender = gr.Radio(label="Gender", choices=["Male","Female"], value="Male")
tts_lang = gr.Dropdown(label="Language", choices=SUPPORTED_LANGUAGES, value="Auto")
tts_rate = gr.Slider(
label="Relative speed",
minimum=-1, maximum=3, value=0, step=0.1
)
tts_volume = gr.Slider(
label="Relative volume",
minimum=-1, maximum=1.5, value=0, step=0.1
)
tts_btn = gr.Button(value="Synthesize")
with gr.Accordion(label="Voice conversion", open=True):
input_audio = gr.Audio(label="Input audio", type="numpy")
inference_btn = gr.Button(value="Inference")
output_msg = gr.Textbox(label="Output message")
output_audio = gr.Audio(label="Output audio", type="filepath")
with gr.Column():
with gr.Accordion(label="Inference options", open=True):
inference_preset = gr.Radio(
label="Preset",
choices=["Singing", "Speaking"],
value="Singing",
interactive=True,
)
f0_predictor = gr.Dropdown(
label="F0 predictor",
choices=["none", "crepe", "dio", "harvest", "pm", "rmvpe"],
value="none",
)
pitch_shift = gr.Slider(
label="Pitch shift (in semitones, 12 in an octave)",
minimum=-12*MAXOCTAVE, maximum=12*MAXOCTAVE, value=0, step=1,
)
leakctrl_ratio = gr.Slider(
label="Timbre leakage control mix ratio (set to 0 to disable it)",
minimum=0, maximum=1, value=0.5, step=0.1,
)
diff_steps = gr.Slider(
label="Shallow diffusion steps",
minimum=0, maximum=1000, value=100, step=10,
)
noise_scale = gr.Slider(
label="Noise scale (try NOT to modify this parameter)",
minimum=0, maximum=1, value=0.4, step=0.01,
)
silent_padding = gr.Slider(
label="Add silent padding to workaround noise caused by unknown reason (in seconds)",
minimum=0, maximum=3, value=0.5, step=0.01,
)
db_threshold = gr.Slider(
label="Silence dB threshold (for slicing audio into chunks)",
minimum=-100, maximum=0, value=-40, step=1,
)
auto_clip = gr.Slider(
label="Apply auto clip to reduce memory consumption (in seconds)",
minimum=0, maximum=100, value=0, step=1,
)
clip_overlap = gr.Slider(
label="Overlap duration between auto clips (in seconds)",
minimum=0, maximum=3, value=0, step=0.01,
)
cross_fade = gr.Slider(
label="Cross fade ratio of overlapping regions",
minimum=0, maximum=1, value=0.75, step=0.01,
)
adaptive_key = gr.Slider(
label="Enhancer adaptive key (in semitones, 12 in an octave)",
minimum=-12*MAXOCTAVE, maximum=12*MAXOCTAVE, value=0, step=1,
)
crepe_f0 = gr.Slider(
label="CREPE F0 threshold (increase to reduce noise but may result in out-of-tune)",
minimum=0, maximum=1, value=0.05, step=0.01,
)
loudness_ratio = gr.Slider(
label="Loudness envelope mix ratio of input and output (0 is input and 1 is output)",
minimum=0, maximum=1, value=0, step=0.01,
)
reencode_audio = gr.Checkbox(
label="Re-encode audio before shallow diffusion, with unknown impact on final result"
)
modelbtn.click(
partial(model_fn, args.model),
inputs=[modelptr, leakctrl, diffonly, enhancer],
outputs=[modelptr, modelbtn, modelmsg, speaker],
)
inference_preset.change(
preset_fn,
inputs=[inference_preset],
outputs=[
f0_predictor, pitch_shift, leakctrl_ratio, diff_steps, noise_scale,
silent_padding, db_threshold, auto_clip, clip_overlap, cross_fade,
adaptive_key, crepe_f0, loudness_ratio, reencode_audio,
],
)
tts_btn.click(
tts_fn,
inputs=[tts_text, tts_gender, tts_lang, tts_rate, tts_volume],
outputs=[input_audio],
)
inference_btn.click(
inference_fn,
inputs=[
modelptr, speaker, input_audio,
f0_predictor, pitch_shift, leakctrl_ratio, diff_steps, noise_scale,
silent_padding, db_threshold, auto_clip, clip_overlap, cross_fade,
adaptive_key, crepe_f0, loudness_ratio, reencode_audio,
],
outputs=[output_msg, output_audio],
)
app.launch(debug=True, share=True)