Spaces:
Runtime error
Runtime error
from collections import deque | |
from functools import partial | |
from inspect import isfunction | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from tqdm import tqdm | |
def exists(x): | |
return x is not None | |
def default(val, d): | |
if exists(val): | |
return val | |
return d() if isfunction(d) else d | |
def extract(a, t, x_shape): | |
b, *_ = t.shape | |
out = a.gather(-1, t) | |
return out.reshape(b, *((1,) * (len(x_shape) - 1))) | |
def noise_like(shape, device, repeat=False): | |
def repeat_noise(): | |
return torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1))) | |
def noise(): | |
return torch.randn(shape, device=device) | |
return repeat_noise() if repeat else noise() | |
def linear_beta_schedule(timesteps, max_beta=0.02): | |
""" | |
linear schedule | |
""" | |
betas = np.linspace(1e-4, max_beta, timesteps) | |
return betas | |
def cosine_beta_schedule(timesteps, s=0.008): | |
""" | |
cosine schedule | |
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ | |
""" | |
steps = timesteps + 1 | |
x = np.linspace(0, steps, steps) | |
alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2 | |
alphas_cumprod = alphas_cumprod / alphas_cumprod[0] | |
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1]) | |
return np.clip(betas, a_min=0, a_max=0.999) | |
beta_schedule = { | |
"cosine": cosine_beta_schedule, | |
"linear": linear_beta_schedule, | |
} | |
class GaussianDiffusion(nn.Module): | |
def __init__(self, | |
denoise_fn, | |
out_dims=128, | |
timesteps=1000, | |
k_step=1000, | |
max_beta=0.02, | |
spec_min=-12, | |
spec_max=2): | |
super().__init__() | |
self.denoise_fn = denoise_fn | |
self.out_dims = out_dims | |
betas = beta_schedule['linear'](timesteps, max_beta=max_beta) | |
alphas = 1. - betas | |
alphas_cumprod = np.cumprod(alphas, axis=0) | |
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) | |
timesteps, = betas.shape | |
self.num_timesteps = int(timesteps) | |
self.k_step = k_step if k_step>0 and k_step<timesteps else timesteps | |
self.noise_list = deque(maxlen=4) | |
to_torch = partial(torch.tensor, dtype=torch.float32) | |
self.register_buffer('betas', to_torch(betas)) | |
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) | |
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) | |
# calculations for diffusion q(x_t | x_{t-1}) and others | |
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) | |
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) | |
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) | |
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) | |
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) | |
# calculations for posterior q(x_{t-1} | x_t, x_0) | |
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod) | |
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) | |
self.register_buffer('posterior_variance', to_torch(posterior_variance)) | |
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain | |
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20)))) | |
self.register_buffer('posterior_mean_coef1', to_torch( | |
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))) | |
self.register_buffer('posterior_mean_coef2', to_torch( | |
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))) | |
self.register_buffer('spec_min', torch.FloatTensor([spec_min])[None, None, :out_dims]) | |
self.register_buffer('spec_max', torch.FloatTensor([spec_max])[None, None, :out_dims]) | |
def q_mean_variance(self, x_start, t): | |
mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start | |
variance = extract(1. - self.alphas_cumprod, t, x_start.shape) | |
log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape) | |
return mean, variance, log_variance | |
def predict_start_from_noise(self, x_t, t, noise): | |
return ( | |
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - | |
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise | |
) | |
def q_posterior(self, x_start, x_t, t): | |
posterior_mean = ( | |
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start + | |
extract(self.posterior_mean_coef2, t, x_t.shape) * x_t | |
) | |
posterior_variance = extract(self.posterior_variance, t, x_t.shape) | |
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape) | |
return posterior_mean, posterior_variance, posterior_log_variance_clipped | |
def p_mean_variance(self, x, t, cond): | |
noise_pred = self.denoise_fn(x, t, cond=cond) | |
x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred) | |
x_recon.clamp_(-1., 1.) | |
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) | |
return model_mean, posterior_variance, posterior_log_variance | |
def p_sample_ddim(self, x, t, interval, cond): | |
""" | |
Use the DDIM method from | |
""" | |
a_t = extract(self.alphas_cumprod, t, x.shape) | |
a_prev = extract(self.alphas_cumprod, torch.max(t - interval, torch.zeros_like(t)), x.shape) | |
noise_pred = self.denoise_fn(x, t, cond=cond) | |
x_prev = a_prev.sqrt() * (x / a_t.sqrt() + (((1 - a_prev) / a_prev).sqrt()-((1 - a_t) / a_t).sqrt()) * noise_pred) | |
return x_prev | |
def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False): | |
b, *_, device = *x.shape, x.device | |
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond) | |
noise = noise_like(x.shape, device, repeat_noise) | |
# no noise when t == 0 | |
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) | |
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise | |
def p_sample_plms(self, x, t, interval, cond, clip_denoised=True, repeat_noise=False): | |
""" | |
Use the PLMS method from | |
[Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778). | |
""" | |
def get_x_pred(x, noise_t, t): | |
a_t = extract(self.alphas_cumprod, t, x.shape) | |
a_prev = extract(self.alphas_cumprod, torch.max(t - interval, torch.zeros_like(t)), x.shape) | |
a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt() | |
x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x - 1 / ( | |
a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t) | |
x_pred = x + x_delta | |
return x_pred | |
noise_list = self.noise_list | |
noise_pred = self.denoise_fn(x, t, cond=cond) | |
if len(noise_list) == 0: | |
x_pred = get_x_pred(x, noise_pred, t) | |
noise_pred_prev = self.denoise_fn(x_pred, max(t - interval, 0), cond=cond) | |
noise_pred_prime = (noise_pred + noise_pred_prev) / 2 | |
elif len(noise_list) == 1: | |
noise_pred_prime = (3 * noise_pred - noise_list[-1]) / 2 | |
elif len(noise_list) == 2: | |
noise_pred_prime = (23 * noise_pred - 16 * noise_list[-1] + 5 * noise_list[-2]) / 12 | |
else: | |
noise_pred_prime = (55 * noise_pred - 59 * noise_list[-1] + 37 * noise_list[-2] - 9 * noise_list[-3]) / 24 | |
x_prev = get_x_pred(x, noise_pred_prime, t) | |
noise_list.append(noise_pred) | |
return x_prev | |
def q_sample(self, x_start, t, noise=None): | |
noise = default(noise, lambda: torch.randn_like(x_start)) | |
return ( | |
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + | |
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise | |
) | |
def p_losses(self, x_start, t, cond, noise=None, loss_type='l2'): | |
noise = default(noise, lambda: torch.randn_like(x_start)) | |
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) | |
x_recon = self.denoise_fn(x_noisy, t, cond) | |
if loss_type == 'l1': | |
loss = (noise - x_recon).abs().mean() | |
elif loss_type == 'l2': | |
loss = F.mse_loss(noise, x_recon) | |
else: | |
raise NotImplementedError() | |
return loss | |
def forward(self, | |
condition, | |
gt_spec=None, | |
infer=True, | |
infer_speedup=10, | |
method='dpm-solver', | |
k_step=300, | |
use_tqdm=True): | |
""" | |
conditioning diffusion, use fastspeech2 encoder output as the condition | |
""" | |
cond = condition.transpose(1, 2) | |
b, device = condition.shape[0], condition.device | |
if not infer: | |
spec = self.norm_spec(gt_spec) | |
t = torch.randint(0, self.k_step, (b,), device=device).long() | |
norm_spec = spec.transpose(1, 2)[:, None, :, :] # [B, 1, M, T] | |
return self.p_losses(norm_spec, t, cond=cond) | |
else: | |
shape = (cond.shape[0], 1, self.out_dims, cond.shape[2]) | |
if gt_spec is None: | |
t = self.k_step | |
x = torch.randn(shape, device=device) | |
else: | |
t = k_step | |
norm_spec = self.norm_spec(gt_spec) | |
norm_spec = norm_spec.transpose(1, 2)[:, None, :, :] | |
x = self.q_sample(x_start=norm_spec, t=torch.tensor([t - 1], device=device).long()) | |
if method is not None and infer_speedup > 1: | |
if method == 'dpm-solver' or method == 'dpm-solver++': | |
from .dpm_solver_pytorch import ( | |
DPM_Solver, | |
NoiseScheduleVP, | |
model_wrapper, | |
) | |
# 1. Define the noise schedule. | |
noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas[:t]) | |
# 2. Convert your discrete-time `model` to the continuous-time | |
# noise prediction model. Here is an example for a diffusion model | |
# `model` with the noise prediction type ("noise") . | |
def my_wrapper(fn): | |
def wrapped(x, t, **kwargs): | |
ret = fn(x, t, **kwargs) | |
if use_tqdm: | |
self.bar.update(1) | |
return ret | |
return wrapped | |
model_fn = model_wrapper( | |
my_wrapper(self.denoise_fn), | |
noise_schedule, | |
model_type="noise", # or "x_start" or "v" or "score" | |
model_kwargs={"cond": cond} | |
) | |
# 3. Define dpm-solver and sample by singlestep DPM-Solver. | |
# (We recommend singlestep DPM-Solver for unconditional sampling) | |
# You can adjust the `steps` to balance the computation | |
# costs and the sample quality. | |
if method == 'dpm-solver': | |
dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver") | |
elif method == 'dpm-solver++': | |
dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++") | |
steps = t // infer_speedup | |
if use_tqdm: | |
self.bar = tqdm(desc="sample time step", total=steps) | |
x = dpm_solver.sample( | |
x, | |
steps=steps, | |
order=2, | |
skip_type="time_uniform", | |
method="multistep", | |
) | |
if use_tqdm: | |
self.bar.close() | |
elif method == 'pndm': | |
self.noise_list = deque(maxlen=4) | |
if use_tqdm: | |
for i in tqdm( | |
reversed(range(0, t, infer_speedup)), desc='sample time step', | |
total=t // infer_speedup, | |
): | |
x = self.p_sample_plms( | |
x, torch.full((b,), i, device=device, dtype=torch.long), | |
infer_speedup, cond=cond | |
) | |
else: | |
for i in reversed(range(0, t, infer_speedup)): | |
x = self.p_sample_plms( | |
x, torch.full((b,), i, device=device, dtype=torch.long), | |
infer_speedup, cond=cond | |
) | |
elif method == 'ddim': | |
if use_tqdm: | |
for i in tqdm( | |
reversed(range(0, t, infer_speedup)), desc='sample time step', | |
total=t // infer_speedup, | |
): | |
x = self.p_sample_ddim( | |
x, torch.full((b,), i, device=device, dtype=torch.long), | |
infer_speedup, cond=cond | |
) | |
else: | |
for i in reversed(range(0, t, infer_speedup)): | |
x = self.p_sample_ddim( | |
x, torch.full((b,), i, device=device, dtype=torch.long), | |
infer_speedup, cond=cond | |
) | |
elif method == 'unipc': | |
from .uni_pc import NoiseScheduleVP, UniPC, model_wrapper | |
# 1. Define the noise schedule. | |
noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas[:t]) | |
# 2. Convert your discrete-time `model` to the continuous-time | |
# noise prediction model. Here is an example for a diffusion model | |
# `model` with the noise prediction type ("noise") . | |
def my_wrapper(fn): | |
def wrapped(x, t, **kwargs): | |
ret = fn(x, t, **kwargs) | |
if use_tqdm: | |
self.bar.update(1) | |
return ret | |
return wrapped | |
model_fn = model_wrapper( | |
my_wrapper(self.denoise_fn), | |
noise_schedule, | |
model_type="noise", # or "x_start" or "v" or "score" | |
model_kwargs={"cond": cond} | |
) | |
# 3. Define uni_pc and sample by multistep UniPC. | |
# You can adjust the `steps` to balance the computation | |
# costs and the sample quality. | |
uni_pc = UniPC(model_fn, noise_schedule, variant='bh2') | |
steps = t // infer_speedup | |
if use_tqdm: | |
self.bar = tqdm(desc="sample time step", total=steps) | |
x = uni_pc.sample( | |
x, | |
steps=steps, | |
order=2, | |
skip_type="time_uniform", | |
method="multistep", | |
) | |
if use_tqdm: | |
self.bar.close() | |
else: | |
raise NotImplementedError(method) | |
else: | |
if use_tqdm: | |
for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t): | |
x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond) | |
else: | |
for i in reversed(range(0, t)): | |
x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond) | |
x = x.squeeze(1).transpose(1, 2) # [B, T, M] | |
return self.denorm_spec(x) | |
def norm_spec(self, x): | |
return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1 | |
def denorm_spec(self, x): | |
return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min | |