File size: 2,143 Bytes
e4ccddf
0c5cd97
f9972d8
e4ccddf
f9972d8
e4ccddf
d7f1aae
e4ccddf
 
 
 
0c5cd97
2278cc5
5d03833
2278cc5
f9972d8
9d0dd09
 
 
 
 
 
 
 
5ab4218
9d0dd09
5ab4218
e4ccddf
f9972d8
 
 
9d0dd09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9972d8
9d0dd09
 
f9972d8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from transformers import pipeline,GemmaForCausalLM,AutoTokenizer,BitsAndBytesConfig
import gradio as gr
import spaces
import torch
# ignore_mismatched_sizes=True
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained('google/gemma-2-9b')
model = GemmaForCausalLM.from_pretrained('google/gemma-2-9b',
                                        quantization_config=quantization_config
                                        )
# pipe = pipeline('text-generation', model=model,tokenizer = tokenizer)

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 128

@spaces.GPU(duration=120)
def generate(
    message: str,
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
    ):
    input_ids = tokenizer(message, return_tensors="pt").to("cuda")
    outputs = model.generate(**input_ids,top_p=top_p,max_new_tokens=max_new_tokens,top_k=top_k,repetition_penalty=repetition_penalty,temperature=temperature)
    return tokenizer.decode(outputs[0], skip_special_tokens=True);
    # return pipe(prompt)[0]['generated_text']

gr.Interface(
    fn=generate,
    inputs=[
        gr.Text(),
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=0.6,
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.9,
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1.2,
        ),],
    outputs="text",
    examples=[['Write me a poem about Machine Learning.']],
    
).launch()