File size: 7,502 Bytes
8850a9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
"""
This script applies to IOB2 or IOBES tagging scheme.
If you are using a different scheme, please convert to IOB2 or IOBES.

IOB2:
- B = begin, 
- I = inside but not the first, 
- O = outside

e.g. 
John   lives in New   York  City  .
B-PER  O     O  B-LOC I-LOC I-LOC O

IOBES:
- B = begin, 
- E = end, 
- S = singleton, 
- I = inside but not the first or the last, 
- O = outside

e.g.
John   lives in New   York  City  .
S-PER  O     O  B-LOC I-LOC E-LOC O

prefix: IOBES
chunk_type: PER, LOC, etc.
"""
from __future__ import division, print_function, unicode_literals

import sys
from collections import defaultdict

def split_tag(chunk_tag):
    """
    split chunk tag into IOBES prefix and chunk_type
    e.g. 
    B-PER -> (B, PER)
    O -> (O, None)
    """
    if chunk_tag == 'O':
        return ('O', None)
    return chunk_tag.split('-', maxsplit=1)

def is_chunk_end(prev_tag, tag):
    """
    check if the previous chunk ended between the previous and current word
    e.g. 
    (B-PER, I-PER) -> False
    (B-LOC, O)  -> True

    Note: in case of contradicting tags, e.g. (B-PER, I-LOC)
    this is considered as (B-PER, B-LOC)
    """
    prefix1, chunk_type1 = split_tag(prev_tag)
    prefix2, chunk_type2 = split_tag(tag)

    if prefix1 == 'O':
        return False
    if prefix2 == 'O':
        return prefix1 != 'O'

    if chunk_type1 != chunk_type2:
        return True

    return prefix2 in ['B', 'S'] or prefix1 in ['E', 'S']

def is_chunk_start(prev_tag, tag):
    """
    check if a new chunk started between the previous and current word
    """
    prefix1, chunk_type1 = split_tag(prev_tag)
    prefix2, chunk_type2 = split_tag(tag)

    if prefix2 == 'O':
        return False
    if prefix1 == 'O':
        return prefix2 != 'O'

    if chunk_type1 != chunk_type2:
        return True

    return prefix2 in ['B', 'S'] or prefix1 in ['E', 'S']


def calc_metrics(tp, p, t, percent=True):
    """
    compute overall precision, recall and FB1 (default values are 0.0)
    if percent is True, return 100 * original decimal value
    """
    precision = tp / p if p else 0
    recall = tp / t if t else 0
    fb1 = 2 * precision * recall / (precision + recall) if precision + recall else 0
    if percent:
        return 100 * precision, 100 * recall, 100 * fb1
    else:
        return precision, recall, fb1


def count_chunks(true_seqs, pred_seqs):
    """
    true_seqs: a list of true tags
    pred_seqs: a list of predicted tags

    return: 
    correct_chunks: a dict (counter), 
                    key = chunk types, 
                    value = number of correctly identified chunks per type
    true_chunks:    a dict, number of true chunks per type
    pred_chunks:    a dict, number of identified chunks per type

    correct_counts, true_counts, pred_counts: similar to above, but for tags
    """
    correct_chunks = defaultdict(int)
    true_chunks = defaultdict(int)
    pred_chunks = defaultdict(int)

    correct_counts = defaultdict(int)
    true_counts = defaultdict(int)
    pred_counts = defaultdict(int)

    prev_true_tag, prev_pred_tag = 'O', 'O'
    correct_chunk = None

    for true_tag, pred_tag in zip(true_seqs, pred_seqs):
        if true_tag == pred_tag:
            correct_counts[true_tag] += 1
        true_counts[true_tag] += 1
        pred_counts[pred_tag] += 1

        _, true_type = split_tag(true_tag)
        _, pred_type = split_tag(pred_tag)

        if correct_chunk is not None:
            true_end = is_chunk_end(prev_true_tag, true_tag)
            pred_end = is_chunk_end(prev_pred_tag, pred_tag)

            if pred_end and true_end:
                correct_chunks[correct_chunk] += 1
                correct_chunk = None
            elif pred_end != true_end or true_type != pred_type:
                correct_chunk = None

        true_start = is_chunk_start(prev_true_tag, true_tag)
        pred_start = is_chunk_start(prev_pred_tag, pred_tag)

        if true_start and pred_start and true_type == pred_type:
            correct_chunk = true_type
        if true_start:
            true_chunks[true_type] += 1
        if pred_start:
            pred_chunks[pred_type] += 1

        prev_true_tag, prev_pred_tag = true_tag, pred_tag
    if correct_chunk is not None:
        correct_chunks[correct_chunk] += 1

    return (correct_chunks, true_chunks, pred_chunks, 
        correct_counts, true_counts, pred_counts)

def get_result(correct_chunks, true_chunks, pred_chunks,
    correct_counts, true_counts, pred_counts, verbose=True):
    """
    if verbose, print overall performance, as well as preformance per chunk type;
    otherwise, simply return overall prec, rec, f1 scores
    """
    # sum counts
    sum_correct_chunks = sum(correct_chunks.values())
    sum_true_chunks = sum(true_chunks.values())
    sum_pred_chunks = sum(pred_chunks.values())

    sum_correct_counts = sum(correct_counts.values())
    sum_true_counts = sum(true_counts.values())

    nonO_correct_counts = sum(v for k, v in correct_counts.items() if k != 'O')
    nonO_true_counts = sum(v for k, v in true_counts.items() if k != 'O')

    chunk_types = sorted(list(set(list(true_chunks) + list(pred_chunks))))

    # compute overall precision, recall and FB1 (default values are 0.0)
    prec, rec, f1 = calc_metrics(sum_correct_chunks, sum_pred_chunks, sum_true_chunks)
    res = (prec, rec, f1)
    if not verbose:
        return res

    # print overall performance, and performance per chunk type
    
    print("processed %i tokens with %i phrases; " % (sum_true_counts, sum_true_chunks), end='')
    print("found: %i phrases; correct: %i.\n" % (sum_pred_chunks, sum_correct_chunks), end='')
        
    print("accuracy: %6.2f%%; (non-O)" % (100*nonO_correct_counts/nonO_true_counts))
    print("accuracy: %6.2f%%; " % (100*sum_correct_counts/sum_true_counts), end='')
    print("precision: %6.2f%%; recall: %6.2f%%; FB1: %6.2f" % (prec, rec, f1))

    # for each chunk type, compute precision, recall and FB1 (default values are 0.0)
    for t in chunk_types:
        prec, rec, f1 = calc_metrics(correct_chunks[t], pred_chunks[t], true_chunks[t])
        print("%17s: " %t , end='')
        print("precision: %6.2f%%; recall: %6.2f%%; FB1: %6.2f" %
                    (prec, rec, f1), end='')
        print("  %d" % pred_chunks[t])

    return res
    # you can generate LaTeX output for tables like in
    # http://cnts.uia.ac.be/conll2003/ner/example.tex
    # but I'm not implementing this

def evaluate(true_seqs, pred_seqs, verbose=True):
    (correct_chunks, true_chunks, pred_chunks,
        correct_counts, true_counts, pred_counts) = count_chunks(true_seqs, pred_seqs)
    result = get_result(correct_chunks, true_chunks, pred_chunks,
        correct_counts, true_counts, pred_counts, verbose=verbose)
    return result

def evaluate_conll_file(fileIterator):
    true_seqs, pred_seqs = [], []
    
    for line in fileIterator:
        cols = line.strip().split()
        # each non-empty line must contain >= 3 columns
        if not cols:
            true_seqs.append('O')
            pred_seqs.append('O')
        elif len(cols) < 3:
            raise IOError("conlleval: too few columns in line %s\n" % line)
        else:
            # extract tags from last 2 columns
            true_seqs.append(cols[-2])
            pred_seqs.append(cols[-1])
    return evaluate(true_seqs, pred_seqs)

if __name__ == '__main__':
    """
    usage:     conlleval < file
    """
    evaluate_conll_file(sys.stdin)