File size: 32,102 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
"""

The arraypad module contains a group of functions to pad values onto the edges

of an n-dimensional array.



"""
import numpy as np
from numpy.core.overrides import array_function_dispatch
from numpy.lib.index_tricks import ndindex


__all__ = ['pad']


###############################################################################
# Private utility functions.


def _round_if_needed(arr, dtype):
    """

    Rounds arr inplace if destination dtype is integer.



    Parameters

    ----------

    arr : ndarray

        Input array.

    dtype : dtype

        The dtype of the destination array.

    """
    if np.issubdtype(dtype, np.integer):
        arr.round(out=arr)


def _slice_at_axis(sl, axis):
    """

    Construct tuple of slices to slice an array in the given dimension.



    Parameters

    ----------

    sl : slice

        The slice for the given dimension.

    axis : int

        The axis to which `sl` is applied. All other dimensions are left

        "unsliced".



    Returns

    -------

    sl : tuple of slices

        A tuple with slices matching `shape` in length.



    Examples

    --------

    >>> _slice_at_axis(slice(None, 3, -1), 1)

    (slice(None, None, None), slice(None, 3, -1), (...,))

    """
    return (slice(None),) * axis + (sl,) + (...,)


def _view_roi(array, original_area_slice, axis):
    """

    Get a view of the current region of interest during iterative padding.



    When padding multiple dimensions iteratively corner values are

    unnecessarily overwritten multiple times. This function reduces the

    working area for the first dimensions so that corners are excluded.



    Parameters

    ----------

    array : ndarray

        The array with the region of interest.

    original_area_slice : tuple of slices

        Denotes the area with original values of the unpadded array.

    axis : int

        The currently padded dimension assuming that `axis` is padded before

        `axis` + 1.



    Returns

    -------

    roi : ndarray

        The region of interest of the original `array`.

    """
    axis += 1
    sl = (slice(None),) * axis + original_area_slice[axis:]
    return array[sl]


def _pad_simple(array, pad_width, fill_value=None):
    """

    Pad array on all sides with either a single value or undefined values.



    Parameters

    ----------

    array : ndarray

        Array to grow.

    pad_width : sequence of tuple[int, int]

        Pad width on both sides for each dimension in `arr`.

    fill_value : scalar, optional

        If provided the padded area is filled with this value, otherwise

        the pad area left undefined.



    Returns

    -------

    padded : ndarray

        The padded array with the same dtype as`array`. Its order will default

        to C-style if `array` is not F-contiguous.

    original_area_slice : tuple

        A tuple of slices pointing to the area of the original array.

    """
    # Allocate grown array
    new_shape = tuple(
        left + size + right
        for size, (left, right) in zip(array.shape, pad_width)
    )
    order = 'F' if array.flags.fnc else 'C'  # Fortran and not also C-order
    padded = np.empty(new_shape, dtype=array.dtype, order=order)

    if fill_value is not None:
        padded.fill(fill_value)

    # Copy old array into correct space
    original_area_slice = tuple(
        slice(left, left + size)
        for size, (left, right) in zip(array.shape, pad_width)
    )
    padded[original_area_slice] = array

    return padded, original_area_slice


def _set_pad_area(padded, axis, width_pair, value_pair):
    """

    Set empty-padded area in given dimension.



    Parameters

    ----------

    padded : ndarray

        Array with the pad area which is modified inplace.

    axis : int

        Dimension with the pad area to set.

    width_pair : (int, int)

        Pair of widths that mark the pad area on both sides in the given

        dimension.

    value_pair : tuple of scalars or ndarrays

        Values inserted into the pad area on each side. It must match or be

        broadcastable to the shape of `arr`.

    """
    left_slice = _slice_at_axis(slice(None, width_pair[0]), axis)
    padded[left_slice] = value_pair[0]

    right_slice = _slice_at_axis(
        slice(padded.shape[axis] - width_pair[1], None), axis)
    padded[right_slice] = value_pair[1]


def _get_edges(padded, axis, width_pair):
    """

    Retrieve edge values from empty-padded array in given dimension.



    Parameters

    ----------

    padded : ndarray

        Empty-padded array.

    axis : int

        Dimension in which the edges are considered.

    width_pair : (int, int)

        Pair of widths that mark the pad area on both sides in the given

        dimension.



    Returns

    -------

    left_edge, right_edge : ndarray

        Edge values of the valid area in `padded` in the given dimension. Its

        shape will always match `padded` except for the dimension given by

        `axis` which will have a length of 1.

    """
    left_index = width_pair[0]
    left_slice = _slice_at_axis(slice(left_index, left_index + 1), axis)
    left_edge = padded[left_slice]

    right_index = padded.shape[axis] - width_pair[1]
    right_slice = _slice_at_axis(slice(right_index - 1, right_index), axis)
    right_edge = padded[right_slice]

    return left_edge, right_edge


def _get_linear_ramps(padded, axis, width_pair, end_value_pair):
    """

    Construct linear ramps for empty-padded array in given dimension.



    Parameters

    ----------

    padded : ndarray

        Empty-padded array.

    axis : int

        Dimension in which the ramps are constructed.

    width_pair : (int, int)

        Pair of widths that mark the pad area on both sides in the given

        dimension.

    end_value_pair : (scalar, scalar)

        End values for the linear ramps which form the edge of the fully padded

        array. These values are included in the linear ramps.



    Returns

    -------

    left_ramp, right_ramp : ndarray

        Linear ramps to set on both sides of `padded`.

    """
    edge_pair = _get_edges(padded, axis, width_pair)

    left_ramp, right_ramp = (
        np.linspace(
            start=end_value,
            stop=edge.squeeze(axis), # Dimension is replaced by linspace
            num=width,
            endpoint=False,
            dtype=padded.dtype,
            axis=axis
        )
        for end_value, edge, width in zip(
            end_value_pair, edge_pair, width_pair
        )
    )
        
    # Reverse linear space in appropriate dimension
    right_ramp = right_ramp[_slice_at_axis(slice(None, None, -1), axis)]

    return left_ramp, right_ramp


def _get_stats(padded, axis, width_pair, length_pair, stat_func):
    """

    Calculate statistic for the empty-padded array in given dimension.



    Parameters

    ----------

    padded : ndarray

        Empty-padded array.

    axis : int

        Dimension in which the statistic is calculated.

    width_pair : (int, int)

        Pair of widths that mark the pad area on both sides in the given

        dimension.

    length_pair : 2-element sequence of None or int

        Gives the number of values in valid area from each side that is

        taken into account when calculating the statistic. If None the entire

        valid area in `padded` is considered.

    stat_func : function

        Function to compute statistic. The expected signature is

        ``stat_func(x: ndarray, axis: int, keepdims: bool) -> ndarray``.



    Returns

    -------

    left_stat, right_stat : ndarray

        Calculated statistic for both sides of `padded`.

    """
    # Calculate indices of the edges of the area with original values
    left_index = width_pair[0]
    right_index = padded.shape[axis] - width_pair[1]
    # as well as its length
    max_length = right_index - left_index

    # Limit stat_lengths to max_length
    left_length, right_length = length_pair
    if left_length is None or max_length < left_length:
        left_length = max_length
    if right_length is None or max_length < right_length:
        right_length = max_length

    if (left_length == 0 or right_length == 0) \
            and stat_func in {np.amax, np.amin}:
        # amax and amin can't operate on an empty array,
        # raise a more descriptive warning here instead of the default one
        raise ValueError("stat_length of 0 yields no value for padding")

    # Calculate statistic for the left side
    left_slice = _slice_at_axis(
        slice(left_index, left_index + left_length), axis)
    left_chunk = padded[left_slice]
    left_stat = stat_func(left_chunk, axis=axis, keepdims=True)
    _round_if_needed(left_stat, padded.dtype)

    if left_length == right_length == max_length:
        # return early as right_stat must be identical to left_stat
        return left_stat, left_stat

    # Calculate statistic for the right side
    right_slice = _slice_at_axis(
        slice(right_index - right_length, right_index), axis)
    right_chunk = padded[right_slice]
    right_stat = stat_func(right_chunk, axis=axis, keepdims=True)
    _round_if_needed(right_stat, padded.dtype)

    return left_stat, right_stat


def _set_reflect_both(padded, axis, width_pair, method, include_edge=False):
    """

    Pad `axis` of `arr` with reflection.



    Parameters

    ----------

    padded : ndarray

        Input array of arbitrary shape.

    axis : int

        Axis along which to pad `arr`.

    width_pair : (int, int)

        Pair of widths that mark the pad area on both sides in the given

        dimension.

    method : str

        Controls method of reflection; options are 'even' or 'odd'.

    include_edge : bool

        If true, edge value is included in reflection, otherwise the edge

        value forms the symmetric axis to the reflection.



    Returns

    -------

    pad_amt : tuple of ints, length 2

        New index positions of padding to do along the `axis`. If these are

        both 0, padding is done in this dimension.

    """
    left_pad, right_pad = width_pair
    old_length = padded.shape[axis] - right_pad - left_pad

    if include_edge:
        # Edge is included, we need to offset the pad amount by 1
        edge_offset = 1
    else:
        edge_offset = 0  # Edge is not included, no need to offset pad amount
        old_length -= 1  # but must be omitted from the chunk

    if left_pad > 0:
        # Pad with reflected values on left side:
        # First limit chunk size which can't be larger than pad area
        chunk_length = min(old_length, left_pad)
        # Slice right to left, stop on or next to edge, start relative to stop
        stop = left_pad - edge_offset
        start = stop + chunk_length
        left_slice = _slice_at_axis(slice(start, stop, -1), axis)
        left_chunk = padded[left_slice]

        if method == "odd":
            # Negate chunk and align with edge
            edge_slice = _slice_at_axis(slice(left_pad, left_pad + 1), axis)
            left_chunk = 2 * padded[edge_slice] - left_chunk

        # Insert chunk into padded area
        start = left_pad - chunk_length
        stop = left_pad
        pad_area = _slice_at_axis(slice(start, stop), axis)
        padded[pad_area] = left_chunk
        # Adjust pointer to left edge for next iteration
        left_pad -= chunk_length

    if right_pad > 0:
        # Pad with reflected values on right side:
        # First limit chunk size which can't be larger than pad area
        chunk_length = min(old_length, right_pad)
        # Slice right to left, start on or next to edge, stop relative to start
        start = -right_pad + edge_offset - 2
        stop = start - chunk_length
        right_slice = _slice_at_axis(slice(start, stop, -1), axis)
        right_chunk = padded[right_slice]

        if method == "odd":
            # Negate chunk and align with edge
            edge_slice = _slice_at_axis(
                slice(-right_pad - 1, -right_pad), axis)
            right_chunk = 2 * padded[edge_slice] - right_chunk

        # Insert chunk into padded area
        start = padded.shape[axis] - right_pad
        stop = start + chunk_length
        pad_area = _slice_at_axis(slice(start, stop), axis)
        padded[pad_area] = right_chunk
        # Adjust pointer to right edge for next iteration
        right_pad -= chunk_length

    return left_pad, right_pad


def _set_wrap_both(padded, axis, width_pair):
    """

    Pad `axis` of `arr` with wrapped values.



    Parameters

    ----------

    padded : ndarray

        Input array of arbitrary shape.

    axis : int

        Axis along which to pad `arr`.

    width_pair : (int, int)

        Pair of widths that mark the pad area on both sides in the given

        dimension.



    Returns

    -------

    pad_amt : tuple of ints, length 2

        New index positions of padding to do along the `axis`. If these are

        both 0, padding is done in this dimension.

    """
    left_pad, right_pad = width_pair
    period = padded.shape[axis] - right_pad - left_pad

    # If the current dimension of `arr` doesn't contain enough valid values
    # (not part of the undefined pad area) we need to pad multiple times.
    # Each time the pad area shrinks on both sides which is communicated with
    # these variables.
    new_left_pad = 0
    new_right_pad = 0

    if left_pad > 0:
        # Pad with wrapped values on left side
        # First slice chunk from right side of the non-pad area.
        # Use min(period, left_pad) to ensure that chunk is not larger than
        # pad area
        right_slice = _slice_at_axis(
            slice(-right_pad - min(period, left_pad),
                  -right_pad if right_pad != 0 else None),
            axis
        )
        right_chunk = padded[right_slice]

        if left_pad > period:
            # Chunk is smaller than pad area
            pad_area = _slice_at_axis(slice(left_pad - period, left_pad), axis)
            new_left_pad = left_pad - period
        else:
            # Chunk matches pad area
            pad_area = _slice_at_axis(slice(None, left_pad), axis)
        padded[pad_area] = right_chunk

    if right_pad > 0:
        # Pad with wrapped values on right side
        # First slice chunk from left side of the non-pad area.
        # Use min(period, right_pad) to ensure that chunk is not larger than
        # pad area
        left_slice = _slice_at_axis(
            slice(left_pad, left_pad + min(period, right_pad),), axis)
        left_chunk = padded[left_slice]

        if right_pad > period:
            # Chunk is smaller than pad area
            pad_area = _slice_at_axis(
                slice(-right_pad, -right_pad + period), axis)
            new_right_pad = right_pad - period
        else:
            # Chunk matches pad area
            pad_area = _slice_at_axis(slice(-right_pad, None), axis)
        padded[pad_area] = left_chunk

    return new_left_pad, new_right_pad


def _as_pairs(x, ndim, as_index=False):
    """

    Broadcast `x` to an array with the shape (`ndim`, 2).



    A helper function for `pad` that prepares and validates arguments like

    `pad_width` for iteration in pairs.



    Parameters

    ----------

    x : {None, scalar, array-like}

        The object to broadcast to the shape (`ndim`, 2).

    ndim : int

        Number of pairs the broadcasted `x` will have.

    as_index : bool, optional

        If `x` is not None, try to round each element of `x` to an integer

        (dtype `np.intp`) and ensure every element is positive.



    Returns

    -------

    pairs : nested iterables, shape (`ndim`, 2)

        The broadcasted version of `x`.



    Raises

    ------

    ValueError

        If `as_index` is True and `x` contains negative elements.

        Or if `x` is not broadcastable to the shape (`ndim`, 2).

    """
    if x is None:
        # Pass through None as a special case, otherwise np.round(x) fails
        # with an AttributeError
        return ((None, None),) * ndim

    x = np.array(x)
    if as_index:
        x = np.round(x).astype(np.intp, copy=False)

    if x.ndim < 3:
        # Optimization: Possibly use faster paths for cases where `x` has
        # only 1 or 2 elements. `np.broadcast_to` could handle these as well
        # but is currently slower

        if x.size == 1:
            # x was supplied as a single value
            x = x.ravel()  # Ensure x[0] works for x.ndim == 0, 1, 2
            if as_index and x < 0:
                raise ValueError("index can't contain negative values")
            return ((x[0], x[0]),) * ndim

        if x.size == 2 and x.shape != (2, 1):
            # x was supplied with a single value for each side
            # but except case when each dimension has a single value
            # which should be broadcasted to a pair,
            # e.g. [[1], [2]] -> [[1, 1], [2, 2]] not [[1, 2], [1, 2]]
            x = x.ravel()  # Ensure x[0], x[1] works
            if as_index and (x[0] < 0 or x[1] < 0):
                raise ValueError("index can't contain negative values")
            return ((x[0], x[1]),) * ndim

    if as_index and x.min() < 0:
        raise ValueError("index can't contain negative values")

    # Converting the array with `tolist` seems to improve performance
    # when iterating and indexing the result (see usage in `pad`)
    return np.broadcast_to(x, (ndim, 2)).tolist()


def _pad_dispatcher(array, pad_width, mode=None, **kwargs):
    return (array,)


###############################################################################
# Public functions


@array_function_dispatch(_pad_dispatcher, module='numpy')
def pad(array, pad_width, mode='constant', **kwargs):
    """

    Pad an array.



    Parameters

    ----------

    array : array_like of rank N

        The array to pad.

    pad_width : {sequence, array_like, int}

        Number of values padded to the edges of each axis.

        ((before_1, after_1), ... (before_N, after_N)) unique pad widths

        for each axis.

        ((before, after),) yields same before and after pad for each axis.

        (pad,) or int is a shortcut for before = after = pad width for all

        axes.

    mode : str or function, optional

        One of the following string values or a user supplied function.



        'constant' (default)

            Pads with a constant value.

        'edge'

            Pads with the edge values of array.

        'linear_ramp'

            Pads with the linear ramp between end_value and the

            array edge value.

        'maximum'

            Pads with the maximum value of all or part of the

            vector along each axis.

        'mean'

            Pads with the mean value of all or part of the

            vector along each axis.

        'median'

            Pads with the median value of all or part of the

            vector along each axis.

        'minimum'

            Pads with the minimum value of all or part of the

            vector along each axis.

        'reflect'

            Pads with the reflection of the vector mirrored on

            the first and last values of the vector along each

            axis.

        'symmetric'

            Pads with the reflection of the vector mirrored

            along the edge of the array.

        'wrap'

            Pads with the wrap of the vector along the axis.

            The first values are used to pad the end and the

            end values are used to pad the beginning.

        'empty'

            Pads with undefined values.



            .. versionadded:: 1.17



        <function>

            Padding function, see Notes.

    stat_length : sequence or int, optional

        Used in 'maximum', 'mean', 'median', and 'minimum'.  Number of

        values at edge of each axis used to calculate the statistic value.



        ((before_1, after_1), ... (before_N, after_N)) unique statistic

        lengths for each axis.



        ((before, after),) yields same before and after statistic lengths

        for each axis.



        (stat_length,) or int is a shortcut for before = after = statistic

        length for all axes.



        Default is ``None``, to use the entire axis.

    constant_values : sequence or scalar, optional

        Used in 'constant'.  The values to set the padded values for each

        axis.



        ``((before_1, after_1), ... (before_N, after_N))`` unique pad constants

        for each axis.



        ``((before, after),)`` yields same before and after constants for each

        axis.



        ``(constant,)`` or ``constant`` is a shortcut for ``before = after = constant`` for

        all axes.



        Default is 0.

    end_values : sequence or scalar, optional

        Used in 'linear_ramp'.  The values used for the ending value of the

        linear_ramp and that will form the edge of the padded array.



        ``((before_1, after_1), ... (before_N, after_N))`` unique end values

        for each axis.



        ``((before, after),)`` yields same before and after end values for each

        axis.



        ``(constant,)`` or ``constant`` is a shortcut for ``before = after = constant`` for

        all axes.



        Default is 0.

    reflect_type : {'even', 'odd'}, optional

        Used in 'reflect', and 'symmetric'.  The 'even' style is the

        default with an unaltered reflection around the edge value.  For

        the 'odd' style, the extended part of the array is created by

        subtracting the reflected values from two times the edge value.



    Returns

    -------

    pad : ndarray

        Padded array of rank equal to `array` with shape increased

        according to `pad_width`.



    Notes

    -----

    .. versionadded:: 1.7.0



    For an array with rank greater than 1, some of the padding of later

    axes is calculated from padding of previous axes.  This is easiest to

    think about with a rank 2 array where the corners of the padded array

    are calculated by using padded values from the first axis.



    The padding function, if used, should modify a rank 1 array in-place. It

    has the following signature::



        padding_func(vector, iaxis_pad_width, iaxis, kwargs)



    where



        vector : ndarray

            A rank 1 array already padded with zeros.  Padded values are

            vector[:iaxis_pad_width[0]] and vector[-iaxis_pad_width[1]:].

        iaxis_pad_width : tuple

            A 2-tuple of ints, iaxis_pad_width[0] represents the number of

            values padded at the beginning of vector where

            iaxis_pad_width[1] represents the number of values padded at

            the end of vector.

        iaxis : int

            The axis currently being calculated.

        kwargs : dict

            Any keyword arguments the function requires.



    Examples

    --------

    >>> a = [1, 2, 3, 4, 5]

    >>> np.pad(a, (2, 3), 'constant', constant_values=(4, 6))

    array([4, 4, 1, ..., 6, 6, 6])



    >>> np.pad(a, (2, 3), 'edge')

    array([1, 1, 1, ..., 5, 5, 5])



    >>> np.pad(a, (2, 3), 'linear_ramp', end_values=(5, -4))

    array([ 5,  3,  1,  2,  3,  4,  5,  2, -1, -4])



    >>> np.pad(a, (2,), 'maximum')

    array([5, 5, 1, 2, 3, 4, 5, 5, 5])



    >>> np.pad(a, (2,), 'mean')

    array([3, 3, 1, 2, 3, 4, 5, 3, 3])



    >>> np.pad(a, (2,), 'median')

    array([3, 3, 1, 2, 3, 4, 5, 3, 3])



    >>> a = [[1, 2], [3, 4]]

    >>> np.pad(a, ((3, 2), (2, 3)), 'minimum')

    array([[1, 1, 1, 2, 1, 1, 1],

           [1, 1, 1, 2, 1, 1, 1],

           [1, 1, 1, 2, 1, 1, 1],

           [1, 1, 1, 2, 1, 1, 1],

           [3, 3, 3, 4, 3, 3, 3],

           [1, 1, 1, 2, 1, 1, 1],

           [1, 1, 1, 2, 1, 1, 1]])



    >>> a = [1, 2, 3, 4, 5]

    >>> np.pad(a, (2, 3), 'reflect')

    array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2])



    >>> np.pad(a, (2, 3), 'reflect', reflect_type='odd')

    array([-1,  0,  1,  2,  3,  4,  5,  6,  7,  8])



    >>> np.pad(a, (2, 3), 'symmetric')

    array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3])



    >>> np.pad(a, (2, 3), 'symmetric', reflect_type='odd')

    array([0, 1, 1, 2, 3, 4, 5, 5, 6, 7])



    >>> np.pad(a, (2, 3), 'wrap')

    array([4, 5, 1, 2, 3, 4, 5, 1, 2, 3])



    >>> def pad_with(vector, pad_width, iaxis, kwargs):

    ...     pad_value = kwargs.get('padder', 10)

    ...     vector[:pad_width[0]] = pad_value

    ...     vector[-pad_width[1]:] = pad_value

    >>> a = np.arange(6)

    >>> a = a.reshape((2, 3))

    >>> np.pad(a, 2, pad_with)

    array([[10, 10, 10, 10, 10, 10, 10],

           [10, 10, 10, 10, 10, 10, 10],

           [10, 10,  0,  1,  2, 10, 10],

           [10, 10,  3,  4,  5, 10, 10],

           [10, 10, 10, 10, 10, 10, 10],

           [10, 10, 10, 10, 10, 10, 10]])

    >>> np.pad(a, 2, pad_with, padder=100)

    array([[100, 100, 100, 100, 100, 100, 100],

           [100, 100, 100, 100, 100, 100, 100],

           [100, 100,   0,   1,   2, 100, 100],

           [100, 100,   3,   4,   5, 100, 100],

           [100, 100, 100, 100, 100, 100, 100],

           [100, 100, 100, 100, 100, 100, 100]])

    """
    array = np.asarray(array)
    pad_width = np.asarray(pad_width)

    if not pad_width.dtype.kind == 'i':
        raise TypeError('`pad_width` must be of integral type.')

    # Broadcast to shape (array.ndim, 2)
    pad_width = _as_pairs(pad_width, array.ndim, as_index=True)

    if callable(mode):
        # Old behavior: Use user-supplied function with np.apply_along_axis
        function = mode
        # Create a new zero padded array
        padded, _ = _pad_simple(array, pad_width, fill_value=0)
        # And apply along each axis

        for axis in range(padded.ndim):
            # Iterate using ndindex as in apply_along_axis, but assuming that
            # function operates inplace on the padded array.

            # view with the iteration axis at the end
            view = np.moveaxis(padded, axis, -1)

            # compute indices for the iteration axes, and append a trailing
            # ellipsis to prevent 0d arrays decaying to scalars (gh-8642)
            inds = ndindex(view.shape[:-1])
            inds = (ind + (Ellipsis,) for ind in inds)
            for ind in inds:
                function(view[ind], pad_width[axis], axis, kwargs)

        return padded

    # Make sure that no unsupported keywords were passed for the current mode
    allowed_kwargs = {
        'empty': [], 'edge': [], 'wrap': [],
        'constant': ['constant_values'],
        'linear_ramp': ['end_values'],
        'maximum': ['stat_length'],
        'mean': ['stat_length'],
        'median': ['stat_length'],
        'minimum': ['stat_length'],
        'reflect': ['reflect_type'],
        'symmetric': ['reflect_type'],
    }
    try:
        unsupported_kwargs = set(kwargs) - set(allowed_kwargs[mode])
    except KeyError:
        raise ValueError("mode '{}' is not supported".format(mode)) from None
    if unsupported_kwargs:
        raise ValueError("unsupported keyword arguments for mode '{}': {}"
                         .format(mode, unsupported_kwargs))

    stat_functions = {"maximum": np.amax, "minimum": np.amin,
                      "mean": np.mean, "median": np.median}

    # Create array with final shape and original values
    # (padded area is undefined)
    padded, original_area_slice = _pad_simple(array, pad_width)
    # And prepare iteration over all dimensions
    # (zipping may be more readable than using enumerate)
    axes = range(padded.ndim)

    if mode == "constant":
        values = kwargs.get("constant_values", 0)
        values = _as_pairs(values, padded.ndim)
        for axis, width_pair, value_pair in zip(axes, pad_width, values):
            roi = _view_roi(padded, original_area_slice, axis)
            _set_pad_area(roi, axis, width_pair, value_pair)

    elif mode == "empty":
        pass  # Do nothing as _pad_simple already returned the correct result

    elif array.size == 0:
        # Only modes "constant" and "empty" can extend empty axes, all other
        # modes depend on `array` not being empty
        # -> ensure every empty axis is only "padded with 0"
        for axis, width_pair in zip(axes, pad_width):
            if array.shape[axis] == 0 and any(width_pair):
                raise ValueError(
                    "can't extend empty axis {} using modes other than "
                    "'constant' or 'empty'".format(axis)
                )
        # passed, don't need to do anything more as _pad_simple already
        # returned the correct result

    elif mode == "edge":
        for axis, width_pair in zip(axes, pad_width):
            roi = _view_roi(padded, original_area_slice, axis)
            edge_pair = _get_edges(roi, axis, width_pair)
            _set_pad_area(roi, axis, width_pair, edge_pair)

    elif mode == "linear_ramp":
        end_values = kwargs.get("end_values", 0)
        end_values = _as_pairs(end_values, padded.ndim)
        for axis, width_pair, value_pair in zip(axes, pad_width, end_values):
            roi = _view_roi(padded, original_area_slice, axis)
            ramp_pair = _get_linear_ramps(roi, axis, width_pair, value_pair)
            _set_pad_area(roi, axis, width_pair, ramp_pair)

    elif mode in stat_functions:
        func = stat_functions[mode]
        length = kwargs.get("stat_length", None)
        length = _as_pairs(length, padded.ndim, as_index=True)
        for axis, width_pair, length_pair in zip(axes, pad_width, length):
            roi = _view_roi(padded, original_area_slice, axis)
            stat_pair = _get_stats(roi, axis, width_pair, length_pair, func)
            _set_pad_area(roi, axis, width_pair, stat_pair)

    elif mode in {"reflect", "symmetric"}:
        method = kwargs.get("reflect_type", "even")
        include_edge = True if mode == "symmetric" else False
        for axis, (left_index, right_index) in zip(axes, pad_width):
            if array.shape[axis] == 1 and (left_index > 0 or right_index > 0):
                # Extending singleton dimension for 'reflect' is legacy
                # behavior; it really should raise an error.
                edge_pair = _get_edges(padded, axis, (left_index, right_index))
                _set_pad_area(
                    padded, axis, (left_index, right_index), edge_pair)
                continue

            roi = _view_roi(padded, original_area_slice, axis)
            while left_index > 0 or right_index > 0:
                # Iteratively pad until dimension is filled with reflected
                # values. This is necessary if the pad area is larger than
                # the length of the original values in the current dimension.
                left_index, right_index = _set_reflect_both(
                    roi, axis, (left_index, right_index),
                    method, include_edge
                )

    elif mode == "wrap":
        for axis, (left_index, right_index) in zip(axes, pad_width):
            roi = _view_roi(padded, original_area_slice, axis)
            while left_index > 0 or right_index > 0:
                # Iteratively pad until dimension is filled with wrapped
                # values. This is necessary if the pad area is larger than
                # the length of the original values in the current dimension.
                left_index, right_index = _set_wrap_both(
                    roi, axis, (left_index, right_index))

    return padded