File size: 9,718 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import torch
from torch._C import _disabled_torch_function_impl
from collections import OrderedDict

# Metaclass to combine _TensorMeta and the instance check override for Parameter.
class _ParameterMeta(torch._C._TensorMeta):
    # Make `isinstance(t, Parameter)` return True for custom tensor instances that have the _is_param flag.
    def __instancecheck__(self, instance):
        return super().__instancecheck__(instance) or (
            isinstance(instance, torch.Tensor) and getattr(instance, '_is_param', False))


class Parameter(torch.Tensor, metaclass=_ParameterMeta):
    r"""A kind of Tensor that is to be considered a module parameter.



    Parameters are :class:`~torch.Tensor` subclasses, that have a

    very special property when used with :class:`Module` s - when they're

    assigned as Module attributes they are automatically added to the list of

    its parameters, and will appear e.g. in :meth:`~Module.parameters` iterator.

    Assigning a Tensor doesn't have such effect. This is because one might

    want to cache some temporary state, like last hidden state of the RNN, in

    the model. If there was no such class as :class:`Parameter`, these

    temporaries would get registered too.



    Args:

        data (Tensor): parameter tensor.

        requires_grad (bool, optional): if the parameter requires gradient. Note that

            the torch.no_grad() context does NOT affect the default behavior of

            Parameter creation--the Parameter will still have `requires_grad=True` in

            :class:`~no_grad` mode. See :ref:`locally-disable-grad-doc` for more

            details. Default: `True`

    """

    def __new__(cls, data=None, requires_grad=True):
        if data is None:
            data = torch.empty(0)
        if type(data) is torch.Tensor or type(data) is Parameter:
            # For ease of BC maintenance, keep this path for standard Tensor.
            # Eventually (tm), we should change the behavior for standard Tensor to match.
            return torch.Tensor._make_subclass(cls, data, requires_grad)

        # Path for custom tensors: set a flag on the instance to indicate parameter-ness.
        t = data.detach().requires_grad_(requires_grad)
        if type(t) is not type(data):
            raise RuntimeError(f"Creating a Parameter from an instance of type {type(data).__name__} "
                               "requires that detach() returns an instance of the same type, but return "
                               f"type {type(t).__name__} was found instead. To use the type as a "
                               "Parameter, please correct the detach() semantics defined by "
                               "its __torch_dispatch__() implementation.")
        t._is_param = True
        return t

    # Note: the 3 methods below only apply to standard Tensor. Parameters of custom tensor types
    # are still considered that custom tensor type and these methods will not be called for them.
    def __deepcopy__(self, memo):
        if id(self) in memo:
            return memo[id(self)]
        else:
            result = type(self)(self.data.clone(memory_format=torch.preserve_format), self.requires_grad)
            memo[id(self)] = result
            return result

    def __repr__(self):
        return 'Parameter containing:\n' + super().__repr__()

    def __reduce_ex__(self, proto):
        state = torch._utils._get_obj_state(self)

        # See Note [Don't serialize hooks]
        hooks = OrderedDict()
        if not state:
            return (
                torch._utils._rebuild_parameter,
                (self.data, self.requires_grad, hooks)
            )

        return (
            torch._utils._rebuild_parameter_with_state,
            (self.data, self.requires_grad, hooks, state)
        )

    __torch_function__ = _disabled_torch_function_impl


class UninitializedTensorMixin:
    _allowed_methods = [
        torch.Tensor.__hash__,
        torch.Tensor.size,
        torch.Tensor.copy_,
        torch.Tensor.is_complex,
        torch.Tensor.is_floating_point,
        torch.Tensor.half,
        torch.Tensor.float,
        torch.Tensor.double,
        torch.Tensor.char,
        torch.Tensor.short,
        torch.Tensor.int,
        torch.Tensor.long,
        torch.Tensor.cuda,
        torch.Tensor.cpu,
        torch.Tensor.to,
        torch.Tensor.get_device,
        torch._has_compatible_shallow_copy_type,
    ]

    def materialize(self, shape, device=None, dtype=None):
        r"""Create a Parameter or Tensor with the same properties of the uninitialized one.



        Given a shape, it materializes a parameter in the same device

        and with the same `dtype` as the current one or the specified ones in the

        arguments.



        Args:

            shape : (tuple): the shape for the materialized tensor.

            device (:class:`torch.device`): the desired device of the parameters

                and buffers in this module. Optional.

            dtype (:class:`torch.dtype`): the desired floating point type of

                the floating point parameters and buffers in this module. Optional.

        """
        if device is None:
            device = self.data.device
        if dtype is None:
            dtype = self.data.dtype
        self.data = torch.empty(shape, device=device, dtype=dtype)
        self.__class__ = self.cls_to_become

    @property
    def shape(self):
        raise RuntimeError(
            'Can\'t access the shape of an uninitialized parameter or buffer. '
            'This error usually happens in `load_state_dict` when trying to load '
            'an uninitialized parameter into an initialized one. '
            'Call `forward` to initialize the parameters before accessing their attributes.')

    def share_memory_(self):
        raise RuntimeError(
            'Can\'t share memory on an uninitialized parameter or buffer. '
            'Call `forward` to initialize the parameters before calling '
            '`module.share_memory()`.')

    def __repr__(self):
        return f'<{self.__class__.__name__}>'

    def __reduce_ex__(self, proto):
        # See Note [Don't serialize hooks]
        return (
            self.__class__,
            (self.requires_grad,)
        )

    @classmethod
    def __torch_function__(cls, func, types, args=(), kwargs=None):
        # method-wrapper is to detect access to Tensor properties that are
        # wrapped in descriptors
        if func in cls._allowed_methods or func.__class__.__name__ == 'method-wrapper':
            if kwargs is None:
                kwargs = {}
            return super().__torch_function__(func, types, args, kwargs)
        raise ValueError(
            f'Attempted to use an uninitialized parameter in {func}. '
            'This error happens when you are using a `LazyModule` or '
            f'explicitly manipulating `torch.nn.parameter.{cls.__name__}` '
            'objects. When using LazyModules Call `forward` with a dummy batch '
            'to initialize the parameters before calling torch functions')


def is_lazy(param):
    return isinstance(param, UninitializedTensorMixin)


class UninitializedParameter(UninitializedTensorMixin, Parameter):
    r"""A parameter that is not initialized.



    Uninitialized Parameters are a a special case of :class:`torch.nn.Parameter`

    where the shape of the data is still unknown.



    Unlike a :class:`torch.nn.Parameter`, uninitialized parameters

    hold no data and attempting to access some properties, like their shape,

    will throw a runtime error. The only operations that can be performed on a uninitialized

    parameter are changing its datatype, moving it to a different device and

    converting it to a regular :class:`torch.nn.Parameter`.



    The default device or dtype to use when the parameter is materialized can be set

    during construction using e.g. ``device='cuda'``.

    """

    cls_to_become = Parameter

    def __new__(cls, requires_grad=True, device=None, dtype=None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        data = torch.empty(0, **factory_kwargs)
        return torch.Tensor._make_subclass(cls, data, requires_grad)

    def __deepcopy__(self, memo):
        if id(self) in memo:
            return memo[id(self)]
        else:
            result = type(self)(self.requires_grad, self.data.device, self.data.dtype)
            memo[id(self)] = result
            return result

class UninitializedBuffer(UninitializedTensorMixin, torch.Tensor):
    r"""A buffer that is not initialized.



    Uninitialized Buffer is a a special case of :class:`torch.Tensor`

    where the shape of the data is still unknown.



    Unlike a :class:`torch.Tensor`, uninitialized parameters

    hold no data and attempting to access some properties, like their shape,

    will throw a runtime error. The only operations that can be performed on a uninitialized

    parameter are changing its datatype, moving it to a different device and

    converting it to a regular :class:`torch.Tensor`.



    The default device or dtype to use when the buffer is materialized can be set

    during construction using e.g. ``device='cuda'``.

    """

    cls_to_become = torch.Tensor

    def __new__(cls, requires_grad=False, device=None, dtype=None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        data = torch.empty(0, **factory_kwargs)
        return torch.Tensor._make_subclass(cls, data, requires_grad)