File size: 22,453 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
"""This file contains utilities for initializing neural network parameters."""
import math
import warnings

from torch import Tensor
import torch
from typing import Optional as _Optional

# These no_grad_* functions are necessary as wrappers around the parts of these
# functions that use `with torch.no_grad()`. The JIT doesn't support context
# managers, so these need to be implemented as builtins. Using these wrappers
# lets us keep those builtins small and re-usable.
def _no_grad_uniform_(tensor, a, b, generator=None):
    with torch.no_grad():
        return tensor.uniform_(a, b, generator=generator)


def _no_grad_normal_(tensor, mean, std, generator=None):
    with torch.no_grad():
        return tensor.normal_(mean, std, generator=generator)


def _no_grad_trunc_normal_(tensor, mean, std, a, b, generator=None):
    # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
    def norm_cdf(x):
        # Computes standard normal cumulative distribution function
        return (1. + math.erf(x / math.sqrt(2.))) / 2.

    if (mean < a - 2 * std) or (mean > b + 2 * std):
        warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
                      "The distribution of values may be incorrect.",
                      stacklevel=2)

    with torch.no_grad():
        # Values are generated by using a truncated uniform distribution and
        # then using the inverse CDF for the normal distribution.
        # Get upper and lower cdf values
        l = norm_cdf((a - mean) / std)
        u = norm_cdf((b - mean) / std)

        # Uniformly fill tensor with values from [l, u], then translate to
        # [2l-1, 2u-1].
        tensor.uniform_(2 * l - 1, 2 * u - 1, generator=generator)

        # Use inverse cdf transform for normal distribution to get truncated
        # standard normal
        tensor.erfinv_()

        # Transform to proper mean, std
        tensor.mul_(std * math.sqrt(2.))
        tensor.add_(mean)

        # Clamp to ensure it's in the proper range
        tensor.clamp_(min=a, max=b)
        return tensor


def _no_grad_fill_(tensor, val):
    with torch.no_grad():
        return tensor.fill_(val)


def _no_grad_zero_(tensor):
    with torch.no_grad():
        return tensor.zero_()


def calculate_gain(nonlinearity, param=None):
    r"""Return the recommended gain value for the given nonlinearity function.



    The values are as follows:



    ================= ====================================================

    nonlinearity      gain

    ================= ====================================================

    Linear / Identity :math:`1`

    Conv{1,2,3}D      :math:`1`

    Sigmoid           :math:`1`

    Tanh              :math:`\frac{5}{3}`

    ReLU              :math:`\sqrt{2}`

    Leaky Relu        :math:`\sqrt{\frac{2}{1 + \text{negative\_slope}^2}}`

    SELU              :math:`\frac{3}{4}`

    ================= ====================================================



    .. warning::

        In order to implement `Self-Normalizing Neural Networks`_ ,

        you should use ``nonlinearity='linear'`` instead of ``nonlinearity='selu'``.

        This gives the initial weights a variance of ``1 / N``,

        which is necessary to induce a stable fixed point in the forward pass.

        In contrast, the default gain for ``SELU`` sacrifices the normalization

        effect for more stable gradient flow in rectangular layers.



    Args:

        nonlinearity: the non-linear function (`nn.functional` name)

        param: optional parameter for the non-linear function



    Examples:

        >>> gain = nn.init.calculate_gain('leaky_relu', 0.2)  # leaky_relu with negative_slope=0.2



    .. _Self-Normalizing Neural Networks: https://papers.nips.cc/paper/2017/hash/5d44ee6f2c3f71b73125876103c8f6c4-Abstract.html

    """
    linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d']
    if nonlinearity in linear_fns or nonlinearity == 'sigmoid':
        return 1
    elif nonlinearity == 'tanh':
        return 5.0 / 3
    elif nonlinearity == 'relu':
        return math.sqrt(2.0)
    elif nonlinearity == 'leaky_relu':
        if param is None:
            negative_slope = 0.01
        elif not isinstance(param, bool) and isinstance(param, int) or isinstance(param, float):
            # True/False are instances of int, hence check above
            negative_slope = param
        else:
            raise ValueError(f"negative_slope {param} not a valid number")
        return math.sqrt(2.0 / (1 + negative_slope ** 2))
    elif nonlinearity == 'selu':
        return 3.0 / 4  # Value found empirically (https://github.com/pytorch/pytorch/pull/50664)
    else:
        raise ValueError(f"Unsupported nonlinearity {nonlinearity}")


def uniform_(

    tensor: Tensor,

    a: float = 0.0,

    b: float = 1.0,

    generator: _Optional[torch.Generator] = None,

) -> Tensor:
    r"""Fill the input Tensor with values drawn from the uniform distribution.



    :math:`\mathcal{U}(a, b)`.



    Args:

        tensor: an n-dimensional `torch.Tensor`

        a: the lower bound of the uniform distribution

        b: the upper bound of the uniform distribution

        generator: the torch Generator to sample from (default: None)



    Examples:

        >>> w = torch.empty(3, 5)

        >>> nn.init.uniform_(w)

    """
    if torch.overrides.has_torch_function_variadic(tensor):
        return torch.overrides.handle_torch_function(
            uniform_, (tensor,), tensor=tensor, a=a, b=b, generator=generator
        )
    return _no_grad_uniform_(tensor, a, b, generator)


def normal_(

    tensor: Tensor,

    mean: float = 0.0,

    std: float = 1.0,

    generator: _Optional[torch.Generator] = None,

) -> Tensor:
    r"""Fill the input Tensor with values drawn from the normal distribution.



    :math:`\mathcal{N}(\text{mean}, \text{std}^2)`.



    Args:

        tensor: an n-dimensional `torch.Tensor`

        mean: the mean of the normal distribution

        std: the standard deviation of the normal distribution

        generator: the torch Generator to sample from (default: None)



    Examples:

        >>> w = torch.empty(3, 5)

        >>> nn.init.normal_(w)

    """
    if torch.overrides.has_torch_function_variadic(tensor):
        return torch.overrides.handle_torch_function(
            normal_, (tensor,), tensor=tensor, mean=mean, std=std, generator=generator
        )
    return _no_grad_normal_(tensor, mean, std, generator)

def trunc_normal_(

    tensor: Tensor,

    mean: float = 0.,

    std: float = 1.,

    a: float = -2.,

    b: float = 2.,

    generator: _Optional[torch.Generator] = None

) -> Tensor:
    r"""Fill the input Tensor with values drawn from a truncated normal distribution.



    The values are effectively drawn from the

    normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`

    with values outside :math:`[a, b]` redrawn until they are within

    the bounds. The method used for generating the random values works

    best when :math:`a \leq \text{mean} \leq b`.



    Args:

        tensor: an n-dimensional `torch.Tensor`

        mean: the mean of the normal distribution

        std: the standard deviation of the normal distribution

        a: the minimum cutoff value

        b: the maximum cutoff value

        generator: the torch Generator to sample from (default: None)



    Examples:

        >>> w = torch.empty(3, 5)

        >>> nn.init.trunc_normal_(w)

    """
    return _no_grad_trunc_normal_(tensor, mean, std, a, b, generator=generator)


def constant_(tensor: Tensor, val: float) -> Tensor:
    r"""Fill the input Tensor with the value :math:`\text{val}`.



    Args:

        tensor: an n-dimensional `torch.Tensor`

        val: the value to fill the tensor with



    Examples:

        >>> w = torch.empty(3, 5)

        >>> nn.init.constant_(w, 0.3)

    """
    if torch.overrides.has_torch_function_variadic(tensor):
        return torch.overrides.handle_torch_function(constant_, (tensor,), tensor=tensor, val=val)
    return _no_grad_fill_(tensor, val)


def ones_(tensor: Tensor) -> Tensor:
    r"""Fill the input Tensor with the scalar value `1`.



    Args:

        tensor: an n-dimensional `torch.Tensor`



    Examples:

        >>> w = torch.empty(3, 5)

        >>> nn.init.ones_(w)

    """
    return _no_grad_fill_(tensor, 1.)


def zeros_(tensor: Tensor) -> Tensor:
    r"""Fill the input Tensor with the scalar value `0`.



    Args:

        tensor: an n-dimensional `torch.Tensor`



    Examples:

        >>> w = torch.empty(3, 5)

        >>> nn.init.zeros_(w)

    """
    return _no_grad_zero_(tensor)


def eye_(tensor):
    r"""Fill the 2-dimensional input `Tensor` with the identity matrix.



    Preserves the identity of the inputs in `Linear` layers, where as

    many inputs are preserved as possible.



    Args:

        tensor: a 2-dimensional `torch.Tensor`



    Examples:

        >>> w = torch.empty(3, 5)

        >>> nn.init.eye_(w)

    """
    if tensor.ndimension() != 2:
        raise ValueError("Only tensors with 2 dimensions are supported")

    with torch.no_grad():
        torch.eye(*tensor.shape, out=tensor, requires_grad=tensor.requires_grad)
    return tensor


def dirac_(tensor, groups=1):
    r"""Fill the {3, 4, 5}-dimensional input `Tensor` with the Dirac delta function.



    Preserves the identity of the inputs in `Convolutional`

    layers, where as many input channels are preserved as possible. In case

    of groups>1, each group of channels preserves identity



    Args:

        tensor: a {3, 4, 5}-dimensional `torch.Tensor`

        groups (int, optional): number of groups in the conv layer (default: 1)

    Examples:

        >>> w = torch.empty(3, 16, 5, 5)

        >>> nn.init.dirac_(w)

        >>> w = torch.empty(3, 24, 5, 5)

        >>> nn.init.dirac_(w, 3)

    """
    dimensions = tensor.ndimension()
    if dimensions not in [3, 4, 5]:
        raise ValueError("Only tensors with 3, 4, or 5 dimensions are supported")

    sizes = tensor.size()

    if sizes[0] % groups != 0:
        raise ValueError('dim 0 must be divisible by groups')

    out_chans_per_grp = sizes[0] // groups
    min_dim = min(out_chans_per_grp, sizes[1])

    with torch.no_grad():
        tensor.zero_()

        for g in range(groups):
            for d in range(min_dim):
                if dimensions == 3:  # Temporal convolution
                    tensor[g * out_chans_per_grp + d, d, tensor.size(2) // 2] = 1
                elif dimensions == 4:  # Spatial convolution
                    tensor[g * out_chans_per_grp + d, d, tensor.size(2) // 2,
                           tensor.size(3) // 2] = 1
                else:  # Volumetric convolution
                    tensor[g * out_chans_per_grp + d, d, tensor.size(2) // 2,
                           tensor.size(3) // 2, tensor.size(4) // 2] = 1
    return tensor


def _calculate_fan_in_and_fan_out(tensor):
    dimensions = tensor.dim()
    if dimensions < 2:
        raise ValueError("Fan in and fan out can not be computed for tensor with fewer than 2 dimensions")

    num_input_fmaps = tensor.size(1)
    num_output_fmaps = tensor.size(0)
    receptive_field_size = 1
    if tensor.dim() > 2:
        # math.prod is not always available, accumulate the product manually
        # we could use functools.reduce but that is not supported by TorchScript
        for s in tensor.shape[2:]:
            receptive_field_size *= s
    fan_in = num_input_fmaps * receptive_field_size
    fan_out = num_output_fmaps * receptive_field_size

    return fan_in, fan_out


def xavier_uniform_(

    tensor: Tensor, gain: float = 1.0, generator: _Optional[torch.Generator] = None

) -> Tensor:
    r"""Fill the input `Tensor` with values using a Xavier uniform distribution.



    The method is described in `Understanding the difficulty of training

    deep feedforward neural networks` - Glorot, X. & Bengio, Y. (2010).

    The resulting tensor will have values sampled from

    :math:`\mathcal{U}(-a, a)` where



    .. math::

        a = \text{gain} \times \sqrt{\frac{6}{\text{fan\_in} + \text{fan\_out}}}



    Also known as Glorot initialization.



    Args:

        tensor: an n-dimensional `torch.Tensor`

        gain: an optional scaling factor

        generator: the torch Generator to sample from (default: None)



    Examples:

        >>> w = torch.empty(3, 5)

        >>> nn.init.xavier_uniform_(w, gain=nn.init.calculate_gain('relu'))

    """
    fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
    std = gain * math.sqrt(2.0 / float(fan_in + fan_out))
    a = math.sqrt(3.0) * std  # Calculate uniform bounds from standard deviation

    return _no_grad_uniform_(tensor, -a, a, generator)


def xavier_normal_(

    tensor: Tensor,

    gain: float = 1.0,

    generator: _Optional[torch.Generator] = None,

) -> Tensor:
    r"""Fill the input `Tensor` with values using a Xavier normal distribution.



    The method is described in `Understanding the difficulty of training deep feedforward

    neural networks` - Glorot, X. & Bengio, Y. (2010). The resulting tensor

    will have values sampled from :math:`\mathcal{N}(0, \text{std}^2)` where



    .. math::

        \text{std} = \text{gain} \times \sqrt{\frac{2}{\text{fan\_in} + \text{fan\_out}}}



    Also known as Glorot initialization.



    Args:

        tensor: an n-dimensional `torch.Tensor`

        gain: an optional scaling factor

        generator: the torch Generator to sample from (default: None)



    Examples:

        >>> w = torch.empty(3, 5)

        >>> nn.init.xavier_normal_(w)

    """
    fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
    std = gain * math.sqrt(2.0 / float(fan_in + fan_out))

    return _no_grad_normal_(tensor, 0., std, generator)


def _calculate_correct_fan(tensor, mode):
    mode = mode.lower()
    valid_modes = ['fan_in', 'fan_out']
    if mode not in valid_modes:
        raise ValueError(f"Mode {mode} not supported, please use one of {valid_modes}")

    fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
    return fan_in if mode == 'fan_in' else fan_out


def kaiming_uniform_(

    tensor: Tensor,

    a: float = 0,

    mode: str = "fan_in",

    nonlinearity: str = "leaky_relu",

    generator: _Optional[torch.Generator] = None,

):
    r"""Fill the input `Tensor` with values using a Kaiming uniform distribution.



    The method is described in `Delving deep into rectifiers: Surpassing

    human-level performance on ImageNet classification` - He, K. et al. (2015).

    The resulting tensor will have values sampled from

    :math:`\mathcal{U}(-\text{bound}, \text{bound})` where



    .. math::

        \text{bound} = \text{gain} \times \sqrt{\frac{3}{\text{fan\_mode}}}



    Also known as He initialization.



    Args:

        tensor: an n-dimensional `torch.Tensor`

        a: the negative slope of the rectifier used after this layer (only

            used with ``'leaky_relu'``)

        mode: either ``'fan_in'`` (default) or ``'fan_out'``. Choosing ``'fan_in'``

            preserves the magnitude of the variance of the weights in the

            forward pass. Choosing ``'fan_out'`` preserves the magnitudes in the

            backwards pass.

        nonlinearity: the non-linear function (`nn.functional` name),

            recommended to use only with ``'relu'`` or ``'leaky_relu'`` (default).

        generator: the torch Generator to sample from (default: None)



    Examples:

        >>> w = torch.empty(3, 5)

        >>> nn.init.kaiming_uniform_(w, mode='fan_in', nonlinearity='relu')

    """
    if torch.overrides.has_torch_function_variadic(tensor):
        return torch.overrides.handle_torch_function(
            kaiming_uniform_,
            (tensor,),
            tensor=tensor,
            a=a,
            mode=mode,
            nonlinearity=nonlinearity,
            generator=generator)

    if 0 in tensor.shape:
        warnings.warn("Initializing zero-element tensors is a no-op")
        return tensor
    fan = _calculate_correct_fan(tensor, mode)
    gain = calculate_gain(nonlinearity, a)
    std = gain / math.sqrt(fan)
    bound = math.sqrt(3.0) * std  # Calculate uniform bounds from standard deviation
    with torch.no_grad():
        return tensor.uniform_(-bound, bound, generator=generator)


def kaiming_normal_(

    tensor: Tensor,

    a: float = 0,

    mode: str = "fan_in",

    nonlinearity: str = "leaky_relu",

    generator: _Optional[torch.Generator] = None,

):
    r"""Fill the input `Tensor` with values using a Kaiming normal distribution.



    The method is described in `Delving deep into rectifiers: Surpassing

    human-level performance on ImageNet classification` - He, K. et al. (2015).

    The resulting tensor will have values sampled from

    :math:`\mathcal{N}(0, \text{std}^2)` where



    .. math::

        \text{std} = \frac{\text{gain}}{\sqrt{\text{fan\_mode}}}



    Also known as He initialization.



    Args:

        tensor: an n-dimensional `torch.Tensor`

        a: the negative slope of the rectifier used after this layer (only

            used with ``'leaky_relu'``)

        mode: either ``'fan_in'`` (default) or ``'fan_out'``. Choosing ``'fan_in'``

            preserves the magnitude of the variance of the weights in the

            forward pass. Choosing ``'fan_out'`` preserves the magnitudes in the

            backwards pass.

        nonlinearity: the non-linear function (`nn.functional` name),

            recommended to use only with ``'relu'`` or ``'leaky_relu'`` (default).

        generator: the torch Generator to sample from (default: None)



    Examples:

        >>> w = torch.empty(3, 5)

        >>> nn.init.kaiming_normal_(w, mode='fan_out', nonlinearity='relu')

    """
    if 0 in tensor.shape:
        warnings.warn("Initializing zero-element tensors is a no-op")
        return tensor
    fan = _calculate_correct_fan(tensor, mode)
    gain = calculate_gain(nonlinearity, a)
    std = gain / math.sqrt(fan)
    with torch.no_grad():
        return tensor.normal_(0, std, generator=generator)


def orthogonal_(

    tensor,

    gain=1,

    generator: _Optional[torch.Generator] = None,

):
    r"""Fill the input `Tensor` with a (semi) orthogonal matrix.



    Described in `Exact solutions to the nonlinear dynamics of learning in deep

    linear neural networks` - Saxe, A. et al. (2013). The input tensor must have

    at least 2 dimensions, and for tensors with more than 2 dimensions the

    trailing dimensions are flattened.



    Args:

        tensor: an n-dimensional `torch.Tensor`, where :math:`n \geq 2`

        gain: optional scaling factor

        generator: the torch Generator to sample from (default: None)



    Examples:

        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_LAPACK)

        >>> w = torch.empty(3, 5)

        >>> nn.init.orthogonal_(w)

    """
    if tensor.ndimension() < 2:
        raise ValueError("Only tensors with 2 or more dimensions are supported")

    if tensor.numel() == 0:
        # no-op
        return tensor
    rows = tensor.size(0)
    cols = tensor.numel() // rows
    flattened = tensor.new(rows, cols).normal_(0, 1, generator=generator)

    if rows < cols:
        flattened.t_()

    # Compute the qr factorization
    q, r = torch.linalg.qr(flattened)
    # Make Q uniform according to https://arxiv.org/pdf/math-ph/0609050.pdf
    d = torch.diag(r, 0)
    ph = d.sign()
    q *= ph

    if rows < cols:
        q.t_()

    with torch.no_grad():
        tensor.view_as(q).copy_(q)
        tensor.mul_(gain)
    return tensor


def sparse_(

    tensor,

    sparsity,

    std=0.01,

    generator: _Optional[torch.Generator] = None,

):
    r"""Fill the 2D input `Tensor` as a sparse matrix.



    The non-zero elements will be drawn from the normal distribution

    :math:`\mathcal{N}(0, 0.01)`, as described in `Deep learning via

    Hessian-free optimization` - Martens, J. (2010).



    Args:

        tensor: an n-dimensional `torch.Tensor`

        sparsity: The fraction of elements in each column to be set to zero

        std: the standard deviation of the normal distribution used to generate

            the non-zero values

        generator: the torch Generator to sample from (default: None)



    Examples:

        >>> w = torch.empty(3, 5)

        >>> nn.init.sparse_(w, sparsity=0.1)

    """
    if tensor.ndimension() != 2:
        raise ValueError("Only tensors with 2 dimensions are supported")

    rows, cols = tensor.shape
    num_zeros = int(math.ceil(sparsity * rows))

    with torch.no_grad():
        tensor.normal_(0, std, generator=generator)
        for col_idx in range(cols):
            row_indices = torch.randperm(rows)
            zero_indices = row_indices[:num_zeros]
            tensor[zero_indices, col_idx] = 0
    return tensor


# for backward compatibility
def _make_deprecate(meth):
    new_name = meth.__name__
    old_name = new_name[:-1]

    def deprecated_init(*args, **kwargs):
        warnings.warn(f"nn.init.{old_name} is now deprecated in favor of nn.init.{new_name}.", stacklevel=2)
        return meth(*args, **kwargs)

    deprecated_init.__doc__ = fr"""

    {old_name}(...)



    .. warning::

        This method is now deprecated in favor of :func:`torch.nn.init.{new_name}`.



    See :func:`~torch.nn.init.{new_name}` for details."""
    deprecated_init.__name__ = old_name
    return deprecated_init


uniform = _make_deprecate(uniform_)
normal = _make_deprecate(normal_)
constant = _make_deprecate(constant_)
eye = _make_deprecate(eye_)
dirac = _make_deprecate(dirac_)
xavier_uniform = _make_deprecate(xavier_uniform_)
xavier_normal = _make_deprecate(xavier_normal_)
kaiming_uniform = _make_deprecate(kaiming_uniform_)
kaiming_normal = _make_deprecate(kaiming_normal_)
orthogonal = _make_deprecate(orthogonal_)
sparse = _make_deprecate(sparse_)