Spaces:
Running
Running
File size: 24,022 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 |
from typing import (
Any,
Callable,
Dict,
List,
Literal,
Optional,
overload,
Sequence,
Tuple,
Union,
)
from torch import Tensor
from torch.types import _dtype, _int, _size
from .common_types import (
_ratio_any_t,
_size_1_t,
_size_2_opt_t,
_size_2_t,
_size_3_opt_t,
_size_3_t,
_size_any_t,
)
# 'TypedDict' is a new accepted type that represents a dictionary with a fixed set of allowed keys.
# It is standards-track but not in `typing` yet. We leave this hear to be uncommented once the feature
# is wide-spread.
# from mypy_extensions import TypedDict
# GRID_SAMPLE_INTERPOLATION_MODES = TypedDict('GRID_SAMPLE_INTERPOLATION_MODES', {'bilinear': int, 'nearest': int})
# GRID_SAMPLE_PADDING_MODES = TypedDict('GRID_SAMPLE_PADDING_MODES', {'zeros': int, 'border': int, 'reflection': int})
GRID_SAMPLE_INTERPOLATION_MODES = Dict[str, int]
GRID_SAMPLE_PADDING_MODES = Dict[str, int]
# These stubs were generated by running stubgen (`stubgen --parse-only functional.py`), followed by manual cleaning.
#
# The 'BroadcastingList{1,2,3}' types were replaced by `_size` or _output_ratio, as appropriate.
# This was necessary since the JIT uses BroadcastingList* types but static checking with mypy etc requires a `Sequence`
# type. There is no way to express the expected lengths of these lists in the current Python typing system.
#
# Functions created via `_add_docstr` in `functional.py` where merely typed as `Any` by `stubgen`, so those were
# deleted from the stub and replaced by generated declarations. See `gen_pyi` for the implementation of the code
# generation logic for those functions. In the future, it might be worth looking into using the mypy plugin system
# to encode the type semantics of `_add_docstr`, should that system ever become widespread.
def fractional_max_pool2d_with_indices(
input: Tensor,
kernel_size: _size,
output_size: Optional[_size] = ...,
output_ratio: Optional[_ratio_any_t] = ...,
return_indices: bool = ...,
_random_samples: Optional[Tensor] = ...,
) -> Tuple[Tensor, Tensor]: ...
def fractional_max_pool3d_with_indices(
input: Tensor,
kernel_size: _size,
output_size: Optional[_size] = ...,
output_ratio: Optional[_ratio_any_t] = ...,
return_indices: bool = ...,
_random_samples: Optional[Tensor] = ...,
) -> Tuple[Tensor, Tensor]: ...
def max_pool1d_with_indices(
input: Tensor,
kernel_size: _size,
stride: Optional[_size] = ...,
padding: _size = ...,
dilation: _size = ...,
ceil_mode: bool = ...,
return_indices: bool = ...,
) -> Tuple[Tensor, Tensor]: ...
def max_pool2d_with_indices(
input: Tensor,
kernel_size: _size,
stride: Optional[_size] = ...,
padding: _size = ...,
dilation: _size = ...,
ceil_mode: bool = ...,
return_indices: bool = ...,
) -> Tuple[Tensor, Tensor]: ...
def max_pool3d_with_indices(
input: Tensor,
kernel_size: _size,
stride: Optional[_size] = ...,
padding: _size = ...,
dilation: _size = ...,
ceil_mode: bool = ...,
return_indices: bool = ...,
) -> Tuple[Tensor, Tensor]: ...
def max_unpool1d(
input: Tensor,
indices: Tensor,
kernel_size: _size,
stride: Optional[_size] = ...,
padding: _size = ...,
output_size: Optional[_size] = ...,
) -> Tensor: ...
def max_unpool2d(
input: Tensor,
indices: Tensor,
kernel_size: _size,
stride: Optional[_size] = ...,
padding: _size = ...,
output_size: Optional[_size] = ...,
) -> Tensor: ...
def max_unpool3d(
input: Tensor,
indices: Tensor,
kernel_size: _size,
stride: Optional[_size] = ...,
padding: _size = ...,
output_size: Optional[_size] = ...,
) -> Tensor: ...
def lp_pool1d(
input: Tensor,
norm_type: float,
kernel_size: _size_1_t,
stride: Union[Optional[_size], Optional[int]] = ...,
ceil_mode: bool = ...,
) -> Tensor: ...
def lp_pool2d(
input: Tensor,
norm_type: float,
kernel_size: _size_2_t,
stride: Union[Optional[_size], Optional[int]] = ...,
ceil_mode: bool = ...,
) -> Tensor: ...
def lp_pool3d(
input: Tensor,
norm_type: float,
kernel_size: _size_3_t,
stride: Union[Optional[_size], Optional[int]] = ...,
ceil_mode: bool = ...,
) -> Tensor: ...
def adaptive_max_pool1d_with_indices(
input: Tensor,
output_size: _size,
return_indices: bool = ...,
) -> Tuple[Tensor, Tensor]: ...
def adaptive_max_pool2d_with_indices(
input: Tensor,
output_size: _size_2_opt_t,
return_indices: bool = ...,
) -> Tuple[Tensor, Tensor]: ...
def adaptive_max_pool3d_with_indices(
input: Tensor,
output_size: _size_3_opt_t,
return_indices: bool = ...,
) -> Tuple[Tensor, Tensor]: ...
def adaptive_avg_pool2d(input: Tensor, output_size: _size_2_opt_t) -> Tensor: ...
def adaptive_avg_pool3d(input: Tensor, output_size: _size_3_opt_t) -> Tensor: ...
def dropout(
input: Tensor,
p: float = ...,
training: bool = ...,
inplace: bool = ...,
) -> Tensor: ...
def alpha_dropout(
input: Tensor,
p: float = ...,
training: bool = ...,
inplace: bool = ...,
) -> Tensor: ...
def dropout1d(
input: Tensor,
p: float = ...,
training: bool = ...,
inplace: bool = ...,
) -> Tensor: ...
def dropout2d(
input: Tensor,
p: float = ...,
training: bool = ...,
inplace: bool = ...,
) -> Tensor: ...
def dropout3d(
input: Tensor,
p: float = ...,
training: bool = ...,
inplace: bool = ...,
) -> Tensor: ...
def feature_alpha_dropout(
input: Tensor,
p: float = ...,
training: bool = ...,
inplace: bool = ...,
) -> Tensor: ...
def threshold(
input: Tensor,
threshold: float,
value: float,
inplace: bool = ...,
) -> Tensor: ...
def relu(input: Tensor, inplace: bool = ...) -> Tensor: ...
def glu(input: Tensor, dim: int = ...) -> Tensor: ...
def hardtanh(
input: Tensor,
min_val: float = ...,
max_val: float = ...,
inplace: bool = ...,
) -> Tensor: ...
def relu6(input: Tensor, inplace: bool = ...) -> Tensor: ...
def elu(input: Tensor, alpha: float = ..., inplace: bool = ...) -> Tensor: ...
def selu(input: Tensor, inplace: bool = ...) -> Tensor: ...
def celu(input: Tensor, alpha: float = ..., inplace: bool = ...) -> Tensor: ...
def leaky_relu(
input: Tensor,
negative_slope: float = ...,
inplace: bool = ...,
) -> Tensor: ...
def rrelu(
input: Tensor,
lower: float = ...,
upper: float = ...,
training: bool = ...,
inplace: bool = ...,
) -> Tensor: ...
def tanhshrink(input: Any): ...
def softsign(input: Any): ...
def softmin(
input: Tensor,
dim: Optional[int] = ...,
_stacklevel: int = ...,
dtype: Optional[_dtype] = ...,
) -> Tensor: ...
def softmax(
input: Tensor,
dim: Optional[int] = ...,
_stacklevel: int = ...,
dtype: Optional[_dtype] = ...,
) -> Tensor: ...
def gumbel_softmax(
logits: Tensor,
tau: float = ...,
hard: bool = ...,
eps: float = ...,
dim: int = ...,
) -> Tensor: ...
def log_softmax(
input: Tensor,
dim: Optional[int] = ...,
_stacklevel: int = ...,
dtype: Optional[_dtype] = ...,
) -> Tensor: ...
def tanh(input: Any): ...
def sigmoid(input: Any) -> Tensor: ...
def hardsigmoid(input: Tensor, inplace: bool = False) -> Tensor: ...
def silu(input: Tensor, inplace: bool = False) -> Tensor: ...
def mish(input: Tensor, inplace: bool = False) -> Tensor: ...
def hardswish(input: Tensor, inplace: bool = False) -> Tensor: ...
def embedding(
input: Tensor,
weight: Tensor,
padding_idx: Optional[int] = ...,
max_norm: Optional[float] = ...,
norm_type: float = ...,
scale_grad_by_freq: bool = ...,
sparse: bool = ...,
) -> Tensor: ...
def embedding_bag(
input: Tensor,
weight: Tensor,
offsets: Optional[Tensor] = ...,
max_norm: Optional[float] = ...,
norm_type: float = ...,
scale_grad_by_freq: bool = ...,
mode: str = ...,
sparse: bool = ...,
per_sample_weights: Optional[Tensor] = ...,
include_last_offset: bool = ...,
padding_idx: Optional[int] = ...,
) -> Tensor: ...
def batch_norm(
input: Tensor,
running_mean: Optional[Tensor],
running_var: Optional[Tensor],
weight: Optional[Tensor] = ...,
bias: Optional[Tensor] = ...,
training: bool = ...,
momentum: float = ...,
eps: float = ...,
) -> Tensor: ...
def instance_norm(
input: Tensor,
running_mean: Optional[Tensor] = ...,
running_var: Optional[Tensor] = ...,
weight: Optional[Tensor] = ...,
bias: Optional[Tensor] = ...,
use_input_stats: bool = ...,
momentum: float = ...,
eps: float = ...,
) -> Tensor: ...
def layer_norm(
input: Tensor,
normalized_shape: Sequence[int],
weight: Optional[Tensor] = ...,
bias: Optional[Tensor] = ...,
eps: float = ...,
) -> Tensor: ...
def group_norm(
input: Tensor,
num_groups: int,
weight: Optional[Tensor] = ...,
bias: Optional[Tensor] = ...,
eps: float = ...,
) -> Tensor: ...
def local_response_norm(
input: Tensor,
size: int,
alpha: float = ...,
beta: float = ...,
k: float = ...,
) -> Tensor: ...
def ctc_loss(
log_probs: Tensor,
targets: Tensor,
input_lengths: Tensor,
target_lengths: Tensor,
blank: int = ...,
reduction: str = ...,
zero_infinity: bool = ...,
) -> Tensor: ...
def nll_loss(
input: Tensor,
target: Tensor,
weight: Optional[Tensor] = ...,
size_average: Optional[bool] = ...,
ignore_index: int = ...,
reduce: Optional[bool] = ...,
reduction: str = ...,
) -> Tensor: ...
def poisson_nll_loss(
input: Tensor,
target: Tensor,
log_input: bool = ...,
full: bool = ...,
size_average: Optional[bool] = ...,
eps: float = ...,
reduce: Optional[bool] = ...,
reduction: str = ...,
) -> Tensor: ...
def gaussian_nll_loss(
input: Tensor,
target: Tensor,
var: Tensor,
full: Optional[bool] = ...,
eps: Optional[float] = ...,
reduction: Optional[str] = ...,
) -> Tensor: ...
def kl_div(
input: Tensor,
target: Tensor,
size_average: Optional[bool] = ...,
reduce: Optional[bool] = ...,
reduction: str = ...,
log_target: bool = ...,
) -> Tensor: ...
def cross_entropy(
input: Tensor,
target: Tensor,
weight: Optional[Tensor] = ...,
size_average: Optional[bool] = ...,
ignore_index: int = ...,
reduce: Optional[bool] = ...,
reduction: str = ...,
label_smoothing: float = ...,
) -> Tensor: ...
def binary_cross_entropy(
input: Tensor,
target: Tensor,
weight: Optional[Tensor] = ...,
size_average: Optional[bool] = ...,
reduce: Optional[bool] = ...,
reduction: str = ...,
) -> Tensor: ...
def binary_cross_entropy_with_logits(
input: Tensor,
target: Tensor,
weight: Optional[Tensor] = ...,
size_average: Optional[bool] = ...,
reduce: Optional[bool] = ...,
reduction: str = ...,
pos_weight: Optional[Tensor] = ...,
) -> Tensor: ...
def smooth_l1_loss(
input: Tensor,
target: Tensor,
size_average: Optional[bool] = ...,
reduce: Optional[bool] = ...,
reduction: str = ...,
beta: float = ...,
) -> Tensor: ...
def huber_loss(
input: Tensor,
target: Tensor,
reduction: str = ...,
delta: float = ...,
) -> Tensor: ...
def l1_loss(
input: Tensor,
target: Tensor,
size_average: Optional[bool] = ...,
reduce: Optional[bool] = ...,
reduction: str = ...,
) -> Tensor: ...
def mse_loss(
input: Tensor,
target: Tensor,
size_average: Optional[bool] = ...,
reduce: Optional[bool] = ...,
reduction: str = ...,
) -> Tensor: ...
def margin_ranking_loss(
input1: Tensor,
input2: Tensor,
target: Tensor,
margin: float = ...,
size_average: Optional[bool] = ...,
reduce: Optional[bool] = ...,
reduction: str = ...,
) -> Tensor: ...
def hinge_embedding_loss(
input: Tensor,
target: Tensor,
margin: float = ...,
size_average: Optional[bool] = ...,
reduce: Optional[bool] = ...,
reduction: str = ...,
) -> Tensor: ...
def multilabel_margin_loss(
input: Tensor,
target: Tensor,
size_average: Optional[bool] = ...,
reduce: Optional[bool] = ...,
reduction: str = ...,
) -> Tensor: ...
def soft_margin_loss(
input: Tensor,
target: Tensor,
size_average: Optional[bool] = ...,
reduce: Optional[bool] = ...,
reduction: str = ...,
) -> Tensor: ...
def multilabel_soft_margin_loss(
input: Tensor,
target: Tensor,
weight: Optional[Tensor] = ...,
size_average: Optional[bool] = ...,
reduce: Optional[bool] = ...,
reduction: str = ...,
) -> Tensor: ...
def cosine_embedding_loss(
input1: Tensor,
input2: Tensor,
target: Tensor,
margin: float = ...,
size_average: Optional[bool] = ...,
reduce: Optional[bool] = ...,
reduction: str = ...,
) -> Tensor: ...
def multi_margin_loss(
input: Tensor,
target: Tensor,
p: int = ...,
margin: float = ...,
weight: Optional[Tensor] = ...,
size_average: Optional[bool] = ...,
reduce: Optional[bool] = ...,
reduction: str = ...,
) -> Tensor: ...
def upsample(
input: Any,
size: Optional[Any] = ...,
scale_factor: Optional[Any] = ...,
mode: str = ...,
align_corners: Optional[Any] = ...,
): ...
def interpolate(
input: Any,
size: Optional[Any] = ...,
scale_factor: Optional[Any] = ...,
mode: str = ...,
align_corners: Optional[Any] = ...,
recompute_scale_factor: Optional[Any] = ...,
antialias: bool = ...,
): ...
def upsample_nearest(
input: Any,
size: Optional[Any] = ...,
scale_factor: Optional[Any] = ...,
): ...
def upsample_bilinear(
input: Any,
size: Optional[Any] = ...,
scale_factor: Optional[Any] = ...,
): ...
def grid_sample(
input: Tensor,
grid: Tensor,
mode: str = ...,
padding_mode: str = ...,
align_corners: Optional[Any] = ...,
) -> Tensor: ...
def affine_grid(
theta: Tensor,
size: List[int],
align_corners: Optional[Any] = ...,
) -> Tensor: ...
def triplet_margin_loss(
anchor: Tensor,
positive: Tensor,
negative: Tensor,
margin: float = ...,
p: float = ...,
eps: float = ...,
swap: bool = ...,
size_average: Optional[bool] = ...,
reduce: Optional[bool] = ...,
reduction: str = ...,
) -> Tensor: ...
def triplet_margin_with_distance_loss(
anchor: Tensor,
positive: Tensor,
negative: Tensor,
*,
distance_function: Optional[Callable[[Tensor, Tensor], Tensor]] = ...,
margin: float = ...,
swap: bool = ...,
reduction: str = ...,
) -> Tensor: ...
def normalize(
input: Tensor,
p: float = ...,
dim: int = ...,
eps: float = ...,
out: Optional[Tensor] = ...,
) -> Tensor: ...
def assert_int_or_pair(
arg: Any,
arg_name: Any,
message: Any,
) -> None: ...
def unfold(
input: Tensor,
kernel_size: _size_any_t,
dilation: _size_any_t = ...,
padding: _size_any_t = ...,
stride: _size_any_t = ...,
) -> Tensor: ...
def fold(
input: Tensor,
output_size: _size_any_t,
kernel_size: _size_any_t,
dilation: _size_any_t = ...,
padding: _size_any_t = ...,
stride: _size_any_t = ...,
) -> Tensor: ...
def _canonical_mask(
mask: Optional[Tensor],
mask_name: str,
other_type: Optional[_dtype],
other_name: str,
target_type: _dtype,
check_other: bool = True,
) -> Optional[Tensor]: ...
def _none_or_dtype(input: Optional[Tensor]) -> Optional[_dtype]: ...
def multi_head_attention_forward(
query: Tensor,
key: Tensor,
value: Tensor,
embed_dim_to_check: int,
num_heads: int,
in_proj_weight: Optional[Tensor],
in_proj_bias: Optional[Tensor],
bias_k: Optional[Tensor],
bias_v: Optional[Tensor],
add_zero_attn: bool,
dropout_p: float,
out_proj_weight: Tensor,
out_proj_bias: Optional[Tensor],
training: bool = True,
key_padding_mask: Optional[Tensor] = None,
need_weights: bool = True,
attn_mask: Optional[Tensor] = None,
use_separate_proj_weight: bool = False,
q_proj_weight: Optional[Tensor] = None,
k_proj_weight: Optional[Tensor] = None,
v_proj_weight: Optional[Tensor] = None,
static_k: Optional[Tensor] = None,
static_v: Optional[Tensor] = None,
average_attn_weights: bool = True,
is_causal: bool = False,
) -> Tuple[Tensor, Optional[Tensor]]: ...
from .. import conv1d as conv1d
from .. import conv2d as conv2d
from .. import conv3d as conv3d
from .. import conv_transpose1d as conv_transpose1d
from .. import conv_transpose2d as conv_transpose2d
from .. import conv_transpose3d as conv_transpose3d
from .. import conv_tbc as conv_tbc
from .. import avg_pool1d as avg_pool1d
from .. import adaptive_avg_pool1d as adaptive_avg_pool1d
from .. import relu_ as relu_
from .. import selu_ as selu_
from .. import celu_ as celu_
from .. import prelu as prelu
from .. import rrelu_ as rrelu_
from .. import hardshrink as hardshrink
from .. import bilinear as bilinear
from .. import pixel_shuffle as pixel_shuffle
from .. import pixel_unshuffle as pixel_unshuffle
from .. import channel_shuffle as channel_shuffle
from .. import native_channel_shuffle as native_channel_shuffle
from .. import pairwise_distance as pairwise_distance
from .. import pdist as pdist
from .. import cosine_similarity as cosine_similarity
from .._C._nn import avg_pool2d as avg_pool2d
from .._C._nn import avg_pool3d as avg_pool3d
from .._C._nn import hardtanh_ as hardtanh_
from .._C._nn import elu_ as elu_
from .._C._nn import leaky_relu_ as leaky_relu_
from .._C._nn import gelu as gelu
from .._C._nn import softplus as softplus
from .._C._nn import softshrink as softshrink
from .._C._nn import linear as linear
from .._C._nn import pad as pad
from .._C._nn import one_hot as one_hot
from .._C._nn import scaled_dot_product_attention as scaled_dot_product_attention
from .._C._nn import log_sigmoid
logsigmoid = log_sigmoid
@overload
def adaptive_max_pool1d(input: Tensor, output_size: Union[_int, _size], return_indices: Literal[False] = False) -> Tensor: ...
@overload
def adaptive_max_pool1d(input: Tensor, output_size: Union[_int, _size], return_indices: Literal[True], /) -> Tuple[Tensor, Tensor]: ...
@overload
def adaptive_max_pool1d(input: Tensor, output_size: Union[_int, _size], *, return_indices: Literal[True]) -> Tuple[Tensor, Tensor]: ...
@overload
def adaptive_max_pool2d(input: Tensor, output_size: Union[_int, _size], return_indices: Literal[False] = False) -> Tensor: ...
@overload
def adaptive_max_pool2d(input: Tensor, output_size: Union[_int, _size], return_indices: Literal[True], /) -> Tuple[Tensor, Tensor]: ...
@overload
def adaptive_max_pool2d(input: Tensor, output_size: Union[_int, _size], *, return_indices: Literal[True]) -> Tuple[Tensor, Tensor]: ...
@overload
def adaptive_max_pool3d(input: Tensor, output_size: Union[_int, _size], return_indices: Literal[False] = False) -> Tensor: ...
@overload
def adaptive_max_pool3d(input: Tensor, output_size: Union[_int, _size], return_indices: Literal[True], /) -> Tuple[Tensor, Tensor]: ...
@overload
def adaptive_max_pool3d(input: Tensor, output_size: Union[_int, _size], *, return_indices: Literal[True]) -> Tuple[Tensor, Tensor]: ...
@overload
def fractional_max_pool2d(input: Tensor, kernel_size: Union[_int, _size], output_size: Optional[Union[_int, _size]] = None, output_ratio: Optional[_ratio_any_t] = None, return_indices: Literal[False] = False, _random_samples: Optional[Tensor] = None) -> Tensor: ...
@overload
def fractional_max_pool2d(input: Tensor, kernel_size: Union[_int, _size], output_size: Optional[Union[_int, _size]], output_ratio: Optional[_ratio_any_t], return_indices: Literal[True], /, _random_samples: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]: ...
@overload
def fractional_max_pool2d(input: Tensor, kernel_size: Union[_int, _size], output_size: Optional[Union[_int, _size]] = None, output_ratio: Optional[_ratio_any_t] = None, *, return_indices: Literal[True], _random_samples: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]: ...
@overload
def fractional_max_pool3d(input: Tensor, kernel_size: Union[_int, _size], output_size: Optional[Union[_int, _size]] = None, output_ratio: Optional[_ratio_any_t] = None, return_indices: Literal[False] = False, _random_samples: Optional[Tensor] = None) -> Tensor: ...
@overload
def fractional_max_pool3d(input: Tensor, kernel_size: Union[_int, _size], output_size: Optional[Union[_int, _size]], output_ratio: Optional[_ratio_any_t], return_indices: Literal[True], /, _random_samples: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]: ...
@overload
def fractional_max_pool3d(input: Tensor, kernel_size: Union[_int, _size], output_size: Optional[Union[_int, _size]] = None, output_ratio: Optional[_ratio_any_t] = None, *, return_indices: Literal[True], _random_samples: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]: ...
@overload
def max_pool1d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]] = None, padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: bool = False, return_indices: Literal[False] = False) -> Tensor: ...
@overload
def max_pool1d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]], padding: Union[_int, _size], dilation: Union[_int, _size], ceil_mode: bool, return_indices: Literal[True], /) -> Tuple[Tensor, Tensor]: ...
@overload
def max_pool1d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]] = None, padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: bool = False, *, return_indices: Literal[True]) -> Tuple[Tensor, Tensor]: ...
@overload
def max_pool2d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]] = None, padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: bool = False, return_indices: Literal[False] = False) -> Tensor: ...
@overload
def max_pool2d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]], padding: Union[_int, _size], dilation: Union[_int, _size], ceil_mode: bool, return_indices: Literal[True], /) -> Tuple[Tensor, Tensor]: ...
@overload
def max_pool2d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]] = None, padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: bool = False, *, return_indices: Literal[True]) -> Tuple[Tensor, Tensor]: ...
@overload
def max_pool3d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]] = None, padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: bool = False, return_indices: Literal[False] = False) -> Tensor: ...
@overload
def max_pool3d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]], padding: Union[_int, _size], dilation: Union[_int, _size], ceil_mode: bool, return_indices: Literal[True], /) -> Tuple[Tensor, Tensor]: ...
@overload
def max_pool3d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]] = None, padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: bool = False, *, return_indices: Literal[True]) -> Tuple[Tensor, Tensor]: ...
|