Spaces:
Running
Running
File size: 13,257 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
from __future__ import annotations
import csv
import inspect
import os
import re
from dataclasses import dataclass
from functools import lru_cache
from typing import Dict, List, Set, Tuple, TYPE_CHECKING, Union
from torch._inductor import config
from torch._inductor.utils import get_benchmark_name
# Prevent circular import
if TYPE_CHECKING:
from torch._inductor.scheduler import (
BaseSchedulerNode,
ExternKernelSchedulerNode,
NopKernelSchedulerNode,
SchedulerNode,
)
# counter for tracking how many kernels have been generated
generated_kernel_count = 0
generated_cpp_vec_kernel_count = 0
num_bytes_accessed = 0
nodes_num_elem: List[
Tuple[
Union[NopKernelSchedulerNode, SchedulerNode, ExternKernelSchedulerNode],
int,
]
] = []
node_runtimes: List[Tuple[BaseSchedulerNode, float]] = []
# counters for tracking fusions
ir_nodes_pre_fusion = 0
# counters for tracking to_dtype inserted
cpp_to_dtype_count = 0
# counters for tracking cpp_wrapper disabled
disable_cpp_wrapper = 0
# reset all counters
def reset():
global generated_kernel_count
global generated_cpp_vec_kernel_count
global num_bytes_accessed, nodes_num_elem
global ir_nodes_pre_fusion
global cpp_to_dtype_count
global disable_cpp_wrapper
generated_kernel_count = 0
generated_cpp_vec_kernel_count = 0
num_bytes_accessed = 0
nodes_num_elem.clear()
node_runtimes.clear()
ir_nodes_pre_fusion = 0
cpp_to_dtype_count = 0
disable_cpp_wrapper = 0
@dataclass
class CachedMetricsDeltas:
"""
The subset of metrics we want update across cache hits, e.g., the
FxGraphCache.
"""
generated_kernel_count: int
generated_cpp_vec_kernel_count: int
ir_nodes_pre_fusion: int
cpp_to_dtype_count: int
class CachedMetricsHelper:
"""
A helper class to help calculate and apply counter deltas for those
metrics we want to save with cache entries (e.g., FxGraphCache) and
apply on a cache hit.
"""
def __init__(self):
global generated_kernel_count
global generated_cpp_vec_kernel_count
global ir_nodes_pre_fusion
global cpp_to_dtype_count
self.generated_kernel_count = generated_kernel_count
self.generated_cpp_vec_kernel_count = generated_cpp_vec_kernel_count
self.ir_nodes_pre_fusion = ir_nodes_pre_fusion
self.cpp_to_dtype_count = cpp_to_dtype_count
def get_deltas(self) -> CachedMetricsDeltas:
global generated_kernel_count
global generated_cpp_vec_kernel_count
global ir_nodes_pre_fusion
global cpp_to_dtype_count
return CachedMetricsDeltas(
generated_kernel_count - self.generated_kernel_count,
generated_cpp_vec_kernel_count - self.generated_cpp_vec_kernel_count,
ir_nodes_pre_fusion - self.ir_nodes_pre_fusion,
cpp_to_dtype_count - self.cpp_to_dtype_count,
)
@staticmethod
def apply_deltas(delta: CachedMetricsDeltas):
global generated_kernel_count
global generated_cpp_vec_kernel_count
global ir_nodes_pre_fusion
global cpp_to_dtype_count
generated_kernel_count += delta.generated_kernel_count
generated_cpp_vec_kernel_count += delta.generated_cpp_vec_kernel_count
ir_nodes_pre_fusion += delta.ir_nodes_pre_fusion
cpp_to_dtype_count += delta.cpp_to_dtype_count
REGISTERED_METRIC_TABLES: Dict[str, MetricTable] = {}
@dataclass
class MetricTable:
table_name: str
column_names: List[str]
num_rows_added: int = 0
def add_row(self, row_fn):
if self.table_name not in enabled_metric_tables():
return
row_dict = row_fn()
assert len(self.column_names) == len(
row_dict
), f"{len(self.column_names)} v.s. {len(row_dict)}"
assert set(self.column_names) == set(
row_dict.keys()
), f"{set(self.column_names)} v.s. {set(row_dict.keys())}"
row = [
get_benchmark_name(),
]
row += [row_dict[column_name] for column_name in self.column_names]
self._write_row(row)
def output_filename(self):
return f"metric_table_{self.table_name}.csv"
def write_header(self):
filename = self.output_filename()
with open(filename, "w") as fd:
writer = csv.writer(fd, lineterminator="\n")
writer.writerow(["model_name"] + self.column_names)
def _write_row(self, row):
filename = self.output_filename()
if self.num_rows_added == 0 and not os.path.exists(filename):
self.write_header()
self.num_rows_added += 1
for idx, orig_val in enumerate(row):
if isinstance(orig_val, float):
new_val = f"{orig_val:.6f}"
elif orig_val is None:
new_val = ""
else:
new_val = orig_val
row[idx] = new_val
with open(filename, "a") as fd:
writer = csv.writer(fd, lineterminator="\n")
writer.writerow(row)
@staticmethod
def register_table(name, column_names):
table = MetricTable(name, column_names)
REGISTERED_METRIC_TABLES[name] = table
MetricTable.register_table(
"slow_fusion",
[
"kernel1_path",
"kernel1_latency",
"kernel2_path",
"kernel2_latency",
"fused_kernel_path",
"fused_kernel_latency",
"slow_down_ratio",
],
)
# track the fusion statistics for each graph
MetricTable.register_table(
"graph_stats",
[
"graph_id",
"num_nodes_before_fusion",
"num_nodes_after_fusion",
],
)
# track the perf difference between persistent reduction and non-persistent
# reductions
MetricTable.register_table(
"persistent_red_perf",
[
"kernel1_name",
"kernel2_name",
"kernel1_latency",
"kernel2_latency",
"size_hints",
"reduction_hint",
"speedup",
],
)
# Log metadata for pointwise/reduction kernels. E.g., model name, kernel path, numel, rnumel, reduction hint
MetricTable.register_table(
"kernel_metadata",
[
"kernel_name",
"kernel_path",
"kernel_category", # pointwise/reduction/foreach etc.
"size_hints",
"reduction_hint",
"line_of_code",
"num_load",
"num_store",
"num_for_loop",
"num_atomic_add",
"num_args",
# xyz numel can be different to size_hints since size_hints are rounded
# up to the nearest power of 2.
# Inductor kernel will burn in the xyz numel in kernel code for static
# shape kernels.
# Logging them will be helpful to find unaligned shape for reduction
"xnumel",
"ynumel",
"rnumel",
"kernel_args_num_gb",
],
)
def _parse_kernel_fn_code(kernel_module_code):
"""
The kernel_module_code is the python module that contains kernel function code.
kernel function is the proper triton kernel function annotated with
@triton.jit
"""
from .codecache import PyCodeCache
from .wrapper_benchmark import get_triton_kernel
mod = PyCodeCache.load(kernel_module_code)
kernel = get_triton_kernel(mod)
# kernel is a CachingAutotune; kernel.fn is the JITFunction;
# kernel.fn.fn is the function being decorate by triton.jit
return inspect.getsource(kernel.fn.fn)
def _parse_kernel_line_of_code(proper_kernel_fn_code):
"""
Return the line of code for the kernel excluding the decorators.
"""
return len(proper_kernel_fn_code.splitlines())
def _parse_size_hints(kernel_module_code, kernel_category):
if kernel_category == "foreach":
# foreach kernel does not have size_hints
return None
m = re.search(r"size_hints=(\[[0-9, ]*\]),", kernel_module_code)
assert m, "size_hints missing!"
return m.group(1)
def _parse_reduction_hint(kernel_category, kernel_module_code):
if kernel_category not in ("reduction", "persistent_reduction"):
return None
m = re.search(r"reduction_hint=ReductionHint\.(\w*),", kernel_module_code)
assert m, "reduction_hint not found in kernel source code!"
return m.group(1)
def _count_pattern(proper_kernel_fn_code, pattern):
return proper_kernel_fn_code.count(pattern)
def _count_args(proper_kernel_fn_code):
def_line = proper_kernel_fn_code.splitlines()[0]
assert def_line.startswith("def ")
start_idx = def_line.index("(")
end_idx = def_line.index("):")
decl_csv = def_line[start_idx + 1 : end_idx]
comps = decl_csv.split(",")
return len(comps)
def _parse_proper_kernel_fn_code(kernel_fn_code):
"""
Skip decorators.
"""
start_pos = kernel_fn_code.index("def ")
return kernel_fn_code[start_pos:]
def _parse_numel(proper_kernel_fn_code, numel_arg_name):
m = re.search(f"{numel_arg_name} = ([\\d]+)", proper_kernel_fn_code)
if m:
return int(m.group(1))
else:
return None
def _parse_kernel_args_num_gb(kernel_fn_code, kernel_category):
"""
inductor meta looks like:
inductor_meta={... 'mutated_arg_names': [], 'no_x_dim': False, 'kernel_num_gb': 2.0},
"""
m = re.search(r".kernel_num_gb.:\s*([0-9.]+)", kernel_fn_code)
if m:
return float(m.group(1))
else:
"""
There are a few cases that kernel_num_gdb field can be missing:
1. the field will be missing if config.benchmark_kernel and
config.profile_bandwidth are false
2. even if config.benchmark_kernel or config.profile_bandwidth is true.
foreach kernel does not have kernel_num_gb field in the metadata
"""
return None
def log_kernel_metadata(kernel_name, kernel_path, kernel_module_code):
"""
An utility to log kernel metadata. We may parse metadata from kernel source code here.
It's fine to parse the generated kernel code here since the logging is
disabled by default. It would hurt compilation time.
"""
from .wrapper_benchmark import get_kernel_category_by_source_code
kernel_category = get_kernel_category_by_source_code(kernel_module_code)
reduction_hint = _parse_reduction_hint(kernel_category, kernel_module_code)
size_hints = _parse_size_hints(kernel_module_code, kernel_category)
kernel_fn_code = _parse_kernel_fn_code(kernel_module_code)
proper_kernel_fn_code = _parse_proper_kernel_fn_code(kernel_fn_code)
# the line of code excluding the decortors
kernel_line_of_code = _parse_kernel_line_of_code(proper_kernel_fn_code)
get_metric_table("kernel_metadata").add_row(
lambda: {
"kernel_name": kernel_name,
"kernel_path": kernel_path,
"kernel_category": kernel_category,
"size_hints": size_hints,
"reduction_hint": reduction_hint,
"line_of_code": kernel_line_of_code,
"num_load": _count_pattern(proper_kernel_fn_code, "tl.load"),
"num_store": _count_pattern(proper_kernel_fn_code, "tl.store"),
"num_for_loop": _count_pattern(proper_kernel_fn_code, "for "),
"num_atomic_add": _count_pattern(proper_kernel_fn_code, "tl.atomic_add"),
"num_args": _count_args(proper_kernel_fn_code),
"xnumel": _parse_numel(proper_kernel_fn_code, "xnumel"),
"ynumel": _parse_numel(proper_kernel_fn_code, "ynumel"),
"rnumel": _parse_numel(proper_kernel_fn_code, "rnumel"),
"kernel_args_num_gb": _parse_kernel_args_num_gb(
kernel_fn_code, kernel_category
),
}
)
def purge_old_log_files():
"""
Purge the old log file at the beginning when the benchmark script runs.
Should do it in the parent process rather than the child processes running
each individual model.
"""
for name, table in REGISTERED_METRIC_TABLES.items():
if name in enabled_metric_tables():
filename = table.output_filename()
if os.path.exists(filename):
os.unlink(filename)
table.write_header()
@lru_cache
def enabled_metric_tables() -> Set[str]:
config_str = config.enabled_metric_tables
enabled = set()
for name in config_str.split(","):
name = name.strip()
if not name:
continue
assert (
name in REGISTERED_METRIC_TABLES
), f"Metric table name {name} is not registered"
enabled.add(name)
return enabled
def is_metric_table_enabled(name):
return name in enabled_metric_tables()
def get_metric_table(name):
assert name in REGISTERED_METRIC_TABLES, f"Metric table {name} is not defined"
return REGISTERED_METRIC_TABLES[name]
|