Spaces:
Running
Running
File size: 43,861 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 |
"""
This module implements computation of elementary transcendental
functions (powers, logarithms, trigonometric and hyperbolic
functions, inverse trigonometric and hyperbolic) for real
floating-point numbers.
For complex and interval implementations of the same functions,
see libmpc and libmpi.
"""
import math
from bisect import bisect
from .backend import xrange
from .backend import MPZ, MPZ_ZERO, MPZ_ONE, MPZ_TWO, MPZ_FIVE, BACKEND
from .libmpf import (
round_floor, round_ceiling, round_down, round_up,
round_nearest, round_fast,
ComplexResult,
bitcount, bctable, lshift, rshift, giant_steps, sqrt_fixed,
from_int, to_int, from_man_exp, to_fixed, to_float, from_float,
from_rational, normalize,
fzero, fone, fnone, fhalf, finf, fninf, fnan,
mpf_cmp, mpf_sign, mpf_abs,
mpf_pos, mpf_neg, mpf_add, mpf_sub, mpf_mul, mpf_div, mpf_shift,
mpf_rdiv_int, mpf_pow_int, mpf_sqrt,
reciprocal_rnd, negative_rnd, mpf_perturb,
isqrt_fast
)
from .libintmath import ifib
#-------------------------------------------------------------------------------
# Tuning parameters
#-------------------------------------------------------------------------------
# Cutoff for computing exp from cosh+sinh. This reduces the
# number of terms by half, but also requires a square root which
# is expensive with the pure-Python square root code.
if BACKEND == 'python':
EXP_COSH_CUTOFF = 600
else:
EXP_COSH_CUTOFF = 400
# Cutoff for using more than 2 series
EXP_SERIES_U_CUTOFF = 1500
# Also basically determined by sqrt
if BACKEND == 'python':
COS_SIN_CACHE_PREC = 400
else:
COS_SIN_CACHE_PREC = 200
COS_SIN_CACHE_STEP = 8
cos_sin_cache = {}
# Number of integer logarithms to cache (for zeta sums)
MAX_LOG_INT_CACHE = 2000
log_int_cache = {}
LOG_TAYLOR_PREC = 2500 # Use Taylor series with caching up to this prec
LOG_TAYLOR_SHIFT = 9 # Cache log values in steps of size 2^-N
log_taylor_cache = {}
# prec/size ratio of x for fastest convergence in AGM formula
LOG_AGM_MAG_PREC_RATIO = 20
ATAN_TAYLOR_PREC = 3000 # Same as for log
ATAN_TAYLOR_SHIFT = 7 # steps of size 2^-N
atan_taylor_cache = {}
# ~= next power of two + 20
cache_prec_steps = [22,22]
for k in xrange(1, bitcount(LOG_TAYLOR_PREC)+1):
cache_prec_steps += [min(2**k,LOG_TAYLOR_PREC)+20] * 2**(k-1)
#----------------------------------------------------------------------------#
# #
# Elementary mathematical constants #
# #
#----------------------------------------------------------------------------#
def constant_memo(f):
"""
Decorator for caching computed values of mathematical
constants. This decorator should be applied to a
function taking a single argument prec as input and
returning a fixed-point value with the given precision.
"""
f.memo_prec = -1
f.memo_val = None
def g(prec, **kwargs):
memo_prec = f.memo_prec
if prec <= memo_prec:
return f.memo_val >> (memo_prec-prec)
newprec = int(prec*1.05+10)
f.memo_val = f(newprec, **kwargs)
f.memo_prec = newprec
return f.memo_val >> (newprec-prec)
g.__name__ = f.__name__
g.__doc__ = f.__doc__
return g
def def_mpf_constant(fixed):
"""
Create a function that computes the mpf value for a mathematical
constant, given a function that computes the fixed-point value.
Assumptions: the constant is positive and has magnitude ~= 1;
the fixed-point function rounds to floor.
"""
def f(prec, rnd=round_fast):
wp = prec + 20
v = fixed(wp)
if rnd in (round_up, round_ceiling):
v += 1
return normalize(0, v, -wp, bitcount(v), prec, rnd)
f.__doc__ = fixed.__doc__
return f
def bsp_acot(q, a, b, hyperbolic):
if b - a == 1:
a1 = MPZ(2*a + 3)
if hyperbolic or a&1:
return MPZ_ONE, a1 * q**2, a1
else:
return -MPZ_ONE, a1 * q**2, a1
m = (a+b)//2
p1, q1, r1 = bsp_acot(q, a, m, hyperbolic)
p2, q2, r2 = bsp_acot(q, m, b, hyperbolic)
return q2*p1 + r1*p2, q1*q2, r1*r2
# the acoth(x) series converges like the geometric series for x^2
# N = ceil(p*log(2)/(2*log(x)))
def acot_fixed(a, prec, hyperbolic):
"""
Compute acot(a) or acoth(a) for an integer a with binary splitting; see
http://numbers.computation.free.fr/Constants/Algorithms/splitting.html
"""
N = int(0.35 * prec/math.log(a) + 20)
p, q, r = bsp_acot(a, 0,N, hyperbolic)
return ((p+q)<<prec)//(q*a)
def machin(coefs, prec, hyperbolic=False):
"""
Evaluate a Machin-like formula, i.e., a linear combination of
acot(n) or acoth(n) for specific integer values of n, using fixed-
point arithmetic. The input should be a list [(c, n), ...], giving
c*acot[h](n) + ...
"""
extraprec = 10
s = MPZ_ZERO
for a, b in coefs:
s += MPZ(a) * acot_fixed(MPZ(b), prec+extraprec, hyperbolic)
return (s >> extraprec)
# Logarithms of integers are needed for various computations involving
# logarithms, powers, radix conversion, etc
@constant_memo
def ln2_fixed(prec):
"""
Computes ln(2). This is done with a hyperbolic Machin-type formula,
with binary splitting at high precision.
"""
return machin([(18, 26), (-2, 4801), (8, 8749)], prec, True)
@constant_memo
def ln10_fixed(prec):
"""
Computes ln(10). This is done with a hyperbolic Machin-type formula.
"""
return machin([(46, 31), (34, 49), (20, 161)], prec, True)
r"""
For computation of pi, we use the Chudnovsky series:
oo
___ k
1 \ (-1) (6 k)! (A + B k)
----- = ) -----------------------
12 pi /___ 3 3k+3/2
(3 k)! (k!) C
k = 0
where A, B, and C are certain integer constants. This series adds roughly
14 digits per term. Note that C^(3/2) can be extracted so that the
series contains only rational terms. This makes binary splitting very
efficient.
The recurrence formulas for the binary splitting were taken from
ftp://ftp.gmplib.org/pub/src/gmp-chudnovsky.c
Previously, Machin's formula was used at low precision and the AGM iteration
was used at high precision. However, the Chudnovsky series is essentially as
fast as the Machin formula at low precision and in practice about 3x faster
than the AGM at high precision (despite theoretically having a worse
asymptotic complexity), so there is no reason not to use it in all cases.
"""
# Constants in Chudnovsky's series
CHUD_A = MPZ(13591409)
CHUD_B = MPZ(545140134)
CHUD_C = MPZ(640320)
CHUD_D = MPZ(12)
def bs_chudnovsky(a, b, level, verbose):
"""
Computes the sum from a to b of the series in the Chudnovsky
formula. Returns g, p, q where p/q is the sum as an exact
fraction and g is a temporary value used to save work
for recursive calls.
"""
if b-a == 1:
g = MPZ((6*b-5)*(2*b-1)*(6*b-1))
p = b**3 * CHUD_C**3 // 24
q = (-1)**b * g * (CHUD_A+CHUD_B*b)
else:
if verbose and level < 4:
print(" binary splitting", a, b)
mid = (a+b)//2
g1, p1, q1 = bs_chudnovsky(a, mid, level+1, verbose)
g2, p2, q2 = bs_chudnovsky(mid, b, level+1, verbose)
p = p1*p2
g = g1*g2
q = q1*p2 + q2*g1
return g, p, q
@constant_memo
def pi_fixed(prec, verbose=False, verbose_base=None):
"""
Compute floor(pi * 2**prec) as a big integer.
This is done using Chudnovsky's series (see comments in
libelefun.py for details).
"""
# The Chudnovsky series gives 14.18 digits per term
N = int(prec/3.3219280948/14.181647462 + 2)
if verbose:
print("binary splitting with N =", N)
g, p, q = bs_chudnovsky(0, N, 0, verbose)
sqrtC = isqrt_fast(CHUD_C<<(2*prec))
v = p*CHUD_C*sqrtC//((q+CHUD_A*p)*CHUD_D)
return v
def degree_fixed(prec):
return pi_fixed(prec)//180
def bspe(a, b):
"""
Sum series for exp(1)-1 between a, b, returning the result
as an exact fraction (p, q).
"""
if b-a == 1:
return MPZ_ONE, MPZ(b)
m = (a+b)//2
p1, q1 = bspe(a, m)
p2, q2 = bspe(m, b)
return p1*q2+p2, q1*q2
@constant_memo
def e_fixed(prec):
"""
Computes exp(1). This is done using the ordinary Taylor series for
exp, with binary splitting. For a description of the algorithm,
see:
http://numbers.computation.free.fr/Constants/
Algorithms/splitting.html
"""
# Slight overestimate of N needed for 1/N! < 2**(-prec)
# This could be tightened for large N.
N = int(1.1*prec/math.log(prec) + 20)
p, q = bspe(0,N)
return ((p+q)<<prec)//q
@constant_memo
def phi_fixed(prec):
"""
Computes the golden ratio, (1+sqrt(5))/2
"""
prec += 10
a = isqrt_fast(MPZ_FIVE<<(2*prec)) + (MPZ_ONE << prec)
return a >> 11
mpf_phi = def_mpf_constant(phi_fixed)
mpf_pi = def_mpf_constant(pi_fixed)
mpf_e = def_mpf_constant(e_fixed)
mpf_degree = def_mpf_constant(degree_fixed)
mpf_ln2 = def_mpf_constant(ln2_fixed)
mpf_ln10 = def_mpf_constant(ln10_fixed)
@constant_memo
def ln_sqrt2pi_fixed(prec):
wp = prec + 10
# ln(sqrt(2*pi)) = ln(2*pi)/2
return to_fixed(mpf_log(mpf_shift(mpf_pi(wp), 1), wp), prec-1)
@constant_memo
def sqrtpi_fixed(prec):
return sqrt_fixed(pi_fixed(prec), prec)
mpf_sqrtpi = def_mpf_constant(sqrtpi_fixed)
mpf_ln_sqrt2pi = def_mpf_constant(ln_sqrt2pi_fixed)
#----------------------------------------------------------------------------#
# #
# Powers #
# #
#----------------------------------------------------------------------------#
def mpf_pow(s, t, prec, rnd=round_fast):
"""
Compute s**t. Raises ComplexResult if s is negative and t is
fractional.
"""
ssign, sman, sexp, sbc = s
tsign, tman, texp, tbc = t
if ssign and texp < 0:
raise ComplexResult("negative number raised to a fractional power")
if texp >= 0:
return mpf_pow_int(s, (-1)**tsign * (tman<<texp), prec, rnd)
# s**(n/2) = sqrt(s)**n
if texp == -1:
if tman == 1:
if tsign:
return mpf_div(fone, mpf_sqrt(s, prec+10,
reciprocal_rnd[rnd]), prec, rnd)
return mpf_sqrt(s, prec, rnd)
else:
if tsign:
return mpf_pow_int(mpf_sqrt(s, prec+10,
reciprocal_rnd[rnd]), -tman, prec, rnd)
return mpf_pow_int(mpf_sqrt(s, prec+10, rnd), tman, prec, rnd)
# General formula: s**t = exp(t*log(s))
# TODO: handle rnd direction of the logarithm carefully
c = mpf_log(s, prec+10, rnd)
return mpf_exp(mpf_mul(t, c), prec, rnd)
def int_pow_fixed(y, n, prec):
"""n-th power of a fixed point number with precision prec
Returns the power in the form man, exp,
man * 2**exp ~= y**n
"""
if n == 2:
return (y*y), 0
bc = bitcount(y)
exp = 0
workprec = 2 * (prec + 4*bitcount(n) + 4)
_, pm, pe, pbc = fone
while 1:
if n & 1:
pm = pm*y
pe = pe+exp
pbc += bc - 2
pbc = pbc + bctable[int(pm >> pbc)]
if pbc > workprec:
pm = pm >> (pbc-workprec)
pe += pbc - workprec
pbc = workprec
n -= 1
if not n:
break
y = y*y
exp = exp+exp
bc = bc + bc - 2
bc = bc + bctable[int(y >> bc)]
if bc > workprec:
y = y >> (bc-workprec)
exp += bc - workprec
bc = workprec
n = n // 2
return pm, pe
# froot(s, n, prec, rnd) computes the real n-th root of a
# positive mpf tuple s.
# To compute the root we start from a 50-bit estimate for r
# generated with ordinary floating-point arithmetic, and then refine
# the value to full accuracy using the iteration
# 1 / y \
# r = --- | (n-1) * r + ---------- |
# n+1 n \ n r_n**(n-1) /
# which is simply Newton's method applied to the equation r**n = y.
# With giant_steps(start, prec+extra) = [p0,...,pm, prec+extra]
# and y = man * 2**-shift one has
# (man * 2**exp)**(1/n) =
# y**(1/n) * 2**(start-prec/n) * 2**(p0-start) * ... * 2**(prec+extra-pm) *
# 2**((exp+shift-(n-1)*prec)/n -extra))
# The last factor is accounted for in the last line of froot.
def nthroot_fixed(y, n, prec, exp1):
start = 50
try:
y1 = rshift(y, prec - n*start)
r = MPZ(int(y1**(1.0/n)))
except OverflowError:
y1 = from_int(y1, start)
fn = from_int(n)
fn = mpf_rdiv_int(1, fn, start)
r = mpf_pow(y1, fn, start)
r = to_int(r)
extra = 10
extra1 = n
prevp = start
for p in giant_steps(start, prec+extra):
pm, pe = int_pow_fixed(r, n-1, prevp)
r2 = rshift(pm, (n-1)*prevp - p - pe - extra1)
B = lshift(y, 2*p-prec+extra1)//r2
r = (B + (n-1) * lshift(r, p-prevp))//n
prevp = p
return r
def mpf_nthroot(s, n, prec, rnd=round_fast):
"""nth-root of a positive number
Use the Newton method when faster, otherwise use x**(1/n)
"""
sign, man, exp, bc = s
if sign:
raise ComplexResult("nth root of a negative number")
if not man:
if s == fnan:
return fnan
if s == fzero:
if n > 0:
return fzero
if n == 0:
return fone
return finf
# Infinity
if not n:
return fnan
if n < 0:
return fzero
return finf
flag_inverse = False
if n < 2:
if n == 0:
return fone
if n == 1:
return mpf_pos(s, prec, rnd)
if n == -1:
return mpf_div(fone, s, prec, rnd)
# n < 0
rnd = reciprocal_rnd[rnd]
flag_inverse = True
extra_inverse = 5
prec += extra_inverse
n = -n
if n > 20 and (n >= 20000 or prec < int(233 + 28.3 * n**0.62)):
prec2 = prec + 10
fn = from_int(n)
nth = mpf_rdiv_int(1, fn, prec2)
r = mpf_pow(s, nth, prec2, rnd)
s = normalize(r[0], r[1], r[2], r[3], prec, rnd)
if flag_inverse:
return mpf_div(fone, s, prec-extra_inverse, rnd)
else:
return s
# Convert to a fixed-point number with prec2 bits.
prec2 = prec + 2*n - (prec%n)
# a few tests indicate that
# for 10 < n < 10**4 a bit more precision is needed
if n > 10:
prec2 += prec2//10
prec2 = prec2 - prec2%n
# Mantissa may have more bits than we need. Trim it down.
shift = bc - prec2
# Adjust exponents to make prec2 and exp+shift multiples of n.
sign1 = 0
es = exp+shift
if es < 0:
sign1 = 1
es = -es
if sign1:
shift += es%n
else:
shift -= es%n
man = rshift(man, shift)
extra = 10
exp1 = ((exp+shift-(n-1)*prec2)//n) - extra
rnd_shift = 0
if flag_inverse:
if rnd == 'u' or rnd == 'c':
rnd_shift = 1
else:
if rnd == 'd' or rnd == 'f':
rnd_shift = 1
man = nthroot_fixed(man+rnd_shift, n, prec2, exp1)
s = from_man_exp(man, exp1, prec, rnd)
if flag_inverse:
return mpf_div(fone, s, prec-extra_inverse, rnd)
else:
return s
def mpf_cbrt(s, prec, rnd=round_fast):
"""cubic root of a positive number"""
return mpf_nthroot(s, 3, prec, rnd)
#----------------------------------------------------------------------------#
# #
# Logarithms #
# #
#----------------------------------------------------------------------------#
def log_int_fixed(n, prec, ln2=None):
"""
Fast computation of log(n), caching the value for small n,
intended for zeta sums.
"""
if n in log_int_cache:
value, vprec = log_int_cache[n]
if vprec >= prec:
return value >> (vprec - prec)
wp = prec + 10
if wp <= LOG_TAYLOR_SHIFT:
if ln2 is None:
ln2 = ln2_fixed(wp)
r = bitcount(n)
x = n << (wp-r)
v = log_taylor_cached(x, wp) + r*ln2
else:
v = to_fixed(mpf_log(from_int(n), wp+5), wp)
if n < MAX_LOG_INT_CACHE:
log_int_cache[n] = (v, wp)
return v >> (wp-prec)
def agm_fixed(a, b, prec):
"""
Fixed-point computation of agm(a,b), assuming
a, b both close to unit magnitude.
"""
i = 0
while 1:
anew = (a+b)>>1
if i > 4 and abs(a-anew) < 8:
return a
b = isqrt_fast(a*b)
a = anew
i += 1
return a
def log_agm(x, prec):
"""
Fixed-point computation of -log(x) = log(1/x), suitable
for large precision. It is required that 0 < x < 1. The
algorithm used is the Sasaki-Kanada formula
-log(x) = pi/agm(theta2(x)^2,theta3(x)^2). [1]
For faster convergence in the theta functions, x should
be chosen closer to 0.
Guard bits must be added by the caller.
HYPOTHESIS: if x = 2^(-n), n bits need to be added to
account for the truncation to a fixed-point number,
and this is the only significant cancellation error.
The number of bits lost to roundoff is small and can be
considered constant.
[1] Richard P. Brent, "Fast Algorithms for High-Precision
Computation of Elementary Functions (extended abstract)",
http://wwwmaths.anu.edu.au/~brent/pd/RNC7-Brent.pdf
"""
x2 = (x*x) >> prec
# Compute jtheta2(x)**2
s = a = b = x2
while a:
b = (b*x2) >> prec
a = (a*b) >> prec
s += a
s += (MPZ_ONE<<prec)
s = (s*s)>>(prec-2)
s = (s*isqrt_fast(x<<prec))>>prec
# Compute jtheta3(x)**2
t = a = b = x
while a:
b = (b*x2) >> prec
a = (a*b) >> prec
t += a
t = (MPZ_ONE<<prec) + (t<<1)
t = (t*t)>>prec
# Final formula
p = agm_fixed(s, t, prec)
return (pi_fixed(prec) << prec) // p
def log_taylor(x, prec, r=0):
"""
Fixed-point calculation of log(x). It is assumed that x is close
enough to 1 for the Taylor series to converge quickly. Convergence
can be improved by specifying r > 0 to compute
log(x^(1/2^r))*2^r, at the cost of performing r square roots.
The caller must provide sufficient guard bits.
"""
for i in xrange(r):
x = isqrt_fast(x<<prec)
one = MPZ_ONE << prec
v = ((x-one)<<prec)//(x+one)
sign = v < 0
if sign:
v = -v
v2 = (v*v) >> prec
v4 = (v2*v2) >> prec
s0 = v
s1 = v//3
v = (v*v4) >> prec
k = 5
while v:
s0 += v // k
k += 2
s1 += v // k
v = (v*v4) >> prec
k += 2
s1 = (s1*v2) >> prec
s = (s0+s1) << (1+r)
if sign:
return -s
return s
def log_taylor_cached(x, prec):
"""
Fixed-point computation of log(x), assuming x in (0.5, 2)
and prec <= LOG_TAYLOR_PREC.
"""
n = x >> (prec-LOG_TAYLOR_SHIFT)
cached_prec = cache_prec_steps[prec]
dprec = cached_prec - prec
if (n, cached_prec) in log_taylor_cache:
a, log_a = log_taylor_cache[n, cached_prec]
else:
a = n << (cached_prec - LOG_TAYLOR_SHIFT)
log_a = log_taylor(a, cached_prec, 8)
log_taylor_cache[n, cached_prec] = (a, log_a)
a >>= dprec
log_a >>= dprec
u = ((x - a) << prec) // a
v = (u << prec) // ((MPZ_TWO << prec) + u)
v2 = (v*v) >> prec
v4 = (v2*v2) >> prec
s0 = v
s1 = v//3
v = (v*v4) >> prec
k = 5
while v:
s0 += v//k
k += 2
s1 += v//k
v = (v*v4) >> prec
k += 2
s1 = (s1*v2) >> prec
s = (s0+s1) << 1
return log_a + s
def mpf_log(x, prec, rnd=round_fast):
"""
Compute the natural logarithm of the mpf value x. If x is negative,
ComplexResult is raised.
"""
sign, man, exp, bc = x
#------------------------------------------------------------------
# Handle special values
if not man:
if x == fzero: return fninf
if x == finf: return finf
if x == fnan: return fnan
if sign:
raise ComplexResult("logarithm of a negative number")
wp = prec + 20
#------------------------------------------------------------------
# Handle log(2^n) = log(n)*2.
# Here we catch the only possible exact value, log(1) = 0
if man == 1:
if not exp:
return fzero
return from_man_exp(exp*ln2_fixed(wp), -wp, prec, rnd)
mag = exp+bc
abs_mag = abs(mag)
#------------------------------------------------------------------
# Handle x = 1+eps, where log(x) ~ x. We need to check for
# cancellation when moving to fixed-point math and compensate
# by increasing the precision. Note that abs_mag in (0, 1) <=>
# 0.5 < x < 2 and x != 1
if abs_mag <= 1:
# Calculate t = x-1 to measure distance from 1 in bits
tsign = 1-abs_mag
if tsign:
tman = (MPZ_ONE<<bc) - man
else:
tman = man - (MPZ_ONE<<(bc-1))
tbc = bitcount(tman)
cancellation = bc - tbc
if cancellation > wp:
t = normalize(tsign, tman, abs_mag-bc, tbc, tbc, 'n')
return mpf_perturb(t, tsign, prec, rnd)
else:
wp += cancellation
# TODO: if close enough to 1, we could use Taylor series
# even in the AGM precision range, since the Taylor series
# converges rapidly
#------------------------------------------------------------------
# Another special case:
# n*log(2) is a good enough approximation
if abs_mag > 10000:
if bitcount(abs_mag) > wp:
return from_man_exp(exp*ln2_fixed(wp), -wp, prec, rnd)
#------------------------------------------------------------------
# General case.
# Perform argument reduction using log(x) = log(x*2^n) - n*log(2):
# If we are in the Taylor precision range, choose magnitude 0 or 1.
# If we are in the AGM precision range, choose magnitude -m for
# some large m; benchmarking on one machine showed m = prec/20 to be
# optimal between 1000 and 100,000 digits.
if wp <= LOG_TAYLOR_PREC:
m = log_taylor_cached(lshift(man, wp-bc), wp)
if mag:
m += mag*ln2_fixed(wp)
else:
optimal_mag = -wp//LOG_AGM_MAG_PREC_RATIO
n = optimal_mag - mag
x = mpf_shift(x, n)
wp += (-optimal_mag)
m = -log_agm(to_fixed(x, wp), wp)
m -= n*ln2_fixed(wp)
return from_man_exp(m, -wp, prec, rnd)
def mpf_log_hypot(a, b, prec, rnd):
"""
Computes log(sqrt(a^2+b^2)) accurately.
"""
# If either a or b is inf/nan/0, assume it to be a
if not b[1]:
a, b = b, a
# a is inf/nan/0
if not a[1]:
# both are inf/nan/0
if not b[1]:
if a == b == fzero:
return fninf
if fnan in (a, b):
return fnan
# at least one term is (+/- inf)^2
return finf
# only a is inf/nan/0
if a == fzero:
# log(sqrt(0+b^2)) = log(|b|)
return mpf_log(mpf_abs(b), prec, rnd)
if a == fnan:
return fnan
return finf
# Exact
a2 = mpf_mul(a,a)
b2 = mpf_mul(b,b)
extra = 20
# Not exact
h2 = mpf_add(a2, b2, prec+extra)
cancelled = mpf_add(h2, fnone, 10)
mag_cancelled = cancelled[2]+cancelled[3]
# Just redo the sum exactly if necessary (could be smarter
# and avoid memory allocation when a or b is precisely 1
# and the other is tiny...)
if cancelled == fzero or mag_cancelled < -extra//2:
h2 = mpf_add(a2, b2, prec+extra-min(a2[2],b2[2]))
return mpf_shift(mpf_log(h2, prec, rnd), -1)
#----------------------------------------------------------------------
# Inverse tangent
#
def atan_newton(x, prec):
if prec >= 100:
r = math.atan(int((x>>(prec-53)))/2.0**53)
else:
r = math.atan(int(x)/2.0**prec)
prevp = 50
r = MPZ(int(r * 2.0**53) >> (53-prevp))
extra_p = 50
for wp in giant_steps(prevp, prec):
wp += extra_p
r = r << (wp-prevp)
cos, sin = cos_sin_fixed(r, wp)
tan = (sin << wp) // cos
a = ((tan-rshift(x, prec-wp)) << wp) // ((MPZ_ONE<<wp) + ((tan**2)>>wp))
r = r - a
prevp = wp
return rshift(r, prevp-prec)
def atan_taylor_get_cached(n, prec):
# Taylor series with caching wins up to huge precisions
# To avoid unnecessary precomputation at low precision, we
# do it in steps
# Round to next power of 2
prec2 = (1<<(bitcount(prec-1))) + 20
dprec = prec2 - prec
if (n, prec2) in atan_taylor_cache:
a, atan_a = atan_taylor_cache[n, prec2]
else:
a = n << (prec2 - ATAN_TAYLOR_SHIFT)
atan_a = atan_newton(a, prec2)
atan_taylor_cache[n, prec2] = (a, atan_a)
return (a >> dprec), (atan_a >> dprec)
def atan_taylor(x, prec):
n = (x >> (prec-ATAN_TAYLOR_SHIFT))
a, atan_a = atan_taylor_get_cached(n, prec)
d = x - a
s0 = v = (d << prec) // ((a**2 >> prec) + (a*d >> prec) + (MPZ_ONE << prec))
v2 = (v**2 >> prec)
v4 = (v2 * v2) >> prec
s1 = v//3
v = (v * v4) >> prec
k = 5
while v:
s0 += v // k
k += 2
s1 += v // k
v = (v * v4) >> prec
k += 2
s1 = (s1 * v2) >> prec
s = s0 - s1
return atan_a + s
def atan_inf(sign, prec, rnd):
if not sign:
return mpf_shift(mpf_pi(prec, rnd), -1)
return mpf_neg(mpf_shift(mpf_pi(prec, negative_rnd[rnd]), -1))
def mpf_atan(x, prec, rnd=round_fast):
sign, man, exp, bc = x
if not man:
if x == fzero: return fzero
if x == finf: return atan_inf(0, prec, rnd)
if x == fninf: return atan_inf(1, prec, rnd)
return fnan
mag = exp + bc
# Essentially infinity
if mag > prec+20:
return atan_inf(sign, prec, rnd)
# Essentially ~ x
if -mag > prec+20:
return mpf_perturb(x, 1-sign, prec, rnd)
wp = prec + 30 + abs(mag)
# For large x, use atan(x) = pi/2 - atan(1/x)
if mag >= 2:
x = mpf_rdiv_int(1, x, wp)
reciprocal = True
else:
reciprocal = False
t = to_fixed(x, wp)
if sign:
t = -t
if wp < ATAN_TAYLOR_PREC:
a = atan_taylor(t, wp)
else:
a = atan_newton(t, wp)
if reciprocal:
a = ((pi_fixed(wp)>>1)+1) - a
if sign:
a = -a
return from_man_exp(a, -wp, prec, rnd)
# TODO: cleanup the special cases
def mpf_atan2(y, x, prec, rnd=round_fast):
xsign, xman, xexp, xbc = x
ysign, yman, yexp, ybc = y
if not yman:
if y == fzero and x != fnan:
if mpf_sign(x) >= 0:
return fzero
return mpf_pi(prec, rnd)
if y in (finf, fninf):
if x in (finf, fninf):
return fnan
# pi/2
if y == finf:
return mpf_shift(mpf_pi(prec, rnd), -1)
# -pi/2
return mpf_neg(mpf_shift(mpf_pi(prec, negative_rnd[rnd]), -1))
return fnan
if ysign:
return mpf_neg(mpf_atan2(mpf_neg(y), x, prec, negative_rnd[rnd]))
if not xman:
if x == fnan:
return fnan
if x == finf:
return fzero
if x == fninf:
return mpf_pi(prec, rnd)
if y == fzero:
return fzero
return mpf_shift(mpf_pi(prec, rnd), -1)
tquo = mpf_atan(mpf_div(y, x, prec+4), prec+4)
if xsign:
return mpf_add(mpf_pi(prec+4), tquo, prec, rnd)
else:
return mpf_pos(tquo, prec, rnd)
def mpf_asin(x, prec, rnd=round_fast):
sign, man, exp, bc = x
if bc+exp > 0 and x not in (fone, fnone):
raise ComplexResult("asin(x) is real only for -1 <= x <= 1")
# asin(x) = 2*atan(x/(1+sqrt(1-x**2)))
wp = prec + 15
a = mpf_mul(x, x)
b = mpf_add(fone, mpf_sqrt(mpf_sub(fone, a, wp), wp), wp)
c = mpf_div(x, b, wp)
return mpf_shift(mpf_atan(c, prec, rnd), 1)
def mpf_acos(x, prec, rnd=round_fast):
# acos(x) = 2*atan(sqrt(1-x**2)/(1+x))
sign, man, exp, bc = x
if bc + exp > 0:
if x not in (fone, fnone):
raise ComplexResult("acos(x) is real only for -1 <= x <= 1")
if x == fnone:
return mpf_pi(prec, rnd)
wp = prec + 15
a = mpf_mul(x, x)
b = mpf_sqrt(mpf_sub(fone, a, wp), wp)
c = mpf_div(b, mpf_add(fone, x, wp), wp)
return mpf_shift(mpf_atan(c, prec, rnd), 1)
def mpf_asinh(x, prec, rnd=round_fast):
wp = prec + 20
sign, man, exp, bc = x
mag = exp+bc
if mag < -8:
if mag < -wp:
return mpf_perturb(x, 1-sign, prec, rnd)
wp += (-mag)
# asinh(x) = log(x+sqrt(x**2+1))
# use reflection symmetry to avoid cancellation
q = mpf_sqrt(mpf_add(mpf_mul(x, x), fone, wp), wp)
q = mpf_add(mpf_abs(x), q, wp)
if sign:
return mpf_neg(mpf_log(q, prec, negative_rnd[rnd]))
else:
return mpf_log(q, prec, rnd)
def mpf_acosh(x, prec, rnd=round_fast):
# acosh(x) = log(x+sqrt(x**2-1))
wp = prec + 15
if mpf_cmp(x, fone) == -1:
raise ComplexResult("acosh(x) is real only for x >= 1")
q = mpf_sqrt(mpf_add(mpf_mul(x,x), fnone, wp), wp)
return mpf_log(mpf_add(x, q, wp), prec, rnd)
def mpf_atanh(x, prec, rnd=round_fast):
# atanh(x) = log((1+x)/(1-x))/2
sign, man, exp, bc = x
if (not man) and exp:
if x in (fzero, fnan):
return x
raise ComplexResult("atanh(x) is real only for -1 <= x <= 1")
mag = bc + exp
if mag > 0:
if mag == 1 and man == 1:
return [finf, fninf][sign]
raise ComplexResult("atanh(x) is real only for -1 <= x <= 1")
wp = prec + 15
if mag < -8:
if mag < -wp:
return mpf_perturb(x, sign, prec, rnd)
wp += (-mag)
a = mpf_add(x, fone, wp)
b = mpf_sub(fone, x, wp)
return mpf_shift(mpf_log(mpf_div(a, b, wp), prec, rnd), -1)
def mpf_fibonacci(x, prec, rnd=round_fast):
sign, man, exp, bc = x
if not man:
if x == fninf:
return fnan
return x
# F(2^n) ~= 2^(2^n)
size = abs(exp+bc)
if exp >= 0:
# Exact
if size < 10 or size <= bitcount(prec):
return from_int(ifib(to_int(x)), prec, rnd)
# Use the modified Binet formula
wp = prec + size + 20
a = mpf_phi(wp)
b = mpf_add(mpf_shift(a, 1), fnone, wp)
u = mpf_pow(a, x, wp)
v = mpf_cos_pi(x, wp)
v = mpf_div(v, u, wp)
u = mpf_sub(u, v, wp)
u = mpf_div(u, b, prec, rnd)
return u
#-------------------------------------------------------------------------------
# Exponential-type functions
#-------------------------------------------------------------------------------
def exponential_series(x, prec, type=0):
"""
Taylor series for cosh/sinh or cos/sin.
type = 0 -- returns exp(x) (slightly faster than cosh+sinh)
type = 1 -- returns (cosh(x), sinh(x))
type = 2 -- returns (cos(x), sin(x))
"""
if x < 0:
x = -x
sign = 1
else:
sign = 0
r = int(0.5*prec**0.5)
xmag = bitcount(x) - prec
r = max(0, xmag + r)
extra = 10 + 2*max(r,-xmag)
wp = prec + extra
x <<= (extra - r)
one = MPZ_ONE << wp
alt = (type == 2)
if prec < EXP_SERIES_U_CUTOFF:
x2 = a = (x*x) >> wp
x4 = (x2*x2) >> wp
s0 = s1 = MPZ_ZERO
k = 2
while a:
a //= (k-1)*k; s0 += a; k += 2
a //= (k-1)*k; s1 += a; k += 2
a = (a*x4) >> wp
s1 = (x2*s1) >> wp
if alt:
c = s1 - s0 + one
else:
c = s1 + s0 + one
else:
u = int(0.3*prec**0.35)
x2 = a = (x*x) >> wp
xpowers = [one, x2]
for i in xrange(1, u):
xpowers.append((xpowers[-1]*x2)>>wp)
sums = [MPZ_ZERO] * u
k = 2
while a:
for i in xrange(u):
a //= (k-1)*k
if alt and k & 2: sums[i] -= a
else: sums[i] += a
k += 2
a = (a*xpowers[-1]) >> wp
for i in xrange(1, u):
sums[i] = (sums[i]*xpowers[i]) >> wp
c = sum(sums) + one
if type == 0:
s = isqrt_fast(c*c - (one<<wp))
if sign:
v = c - s
else:
v = c + s
for i in xrange(r):
v = (v*v) >> wp
return v >> extra
else:
# Repeatedly apply the double-angle formula
# cosh(2*x) = 2*cosh(x)^2 - 1
# cos(2*x) = 2*cos(x)^2 - 1
pshift = wp-1
for i in xrange(r):
c = ((c*c) >> pshift) - one
# With the abs, this is the same for sinh and sin
s = isqrt_fast(abs((one<<wp) - c*c))
if sign:
s = -s
return (c>>extra), (s>>extra)
def exp_basecase(x, prec):
"""
Compute exp(x) as a fixed-point number. Works for any x,
but for speed should have |x| < 1. For an arbitrary number,
use exp(x) = exp(x-m*log(2)) * 2^m where m = floor(x/log(2)).
"""
if prec > EXP_COSH_CUTOFF:
return exponential_series(x, prec, 0)
r = int(prec**0.5)
prec += r
s0 = s1 = (MPZ_ONE << prec)
k = 2
a = x2 = (x*x) >> prec
while a:
a //= k; s0 += a; k += 1
a //= k; s1 += a; k += 1
a = (a*x2) >> prec
s1 = (s1*x) >> prec
s = s0 + s1
u = r
while r:
s = (s*s) >> prec
r -= 1
return s >> u
def exp_expneg_basecase(x, prec):
"""
Computation of exp(x), exp(-x)
"""
if prec > EXP_COSH_CUTOFF:
cosh, sinh = exponential_series(x, prec, 1)
return cosh+sinh, cosh-sinh
a = exp_basecase(x, prec)
b = (MPZ_ONE << (prec+prec)) // a
return a, b
def cos_sin_basecase(x, prec):
"""
Compute cos(x), sin(x) as fixed-point numbers, assuming x
in [0, pi/2). For an arbitrary number, use x' = x - m*(pi/2)
where m = floor(x/(pi/2)) along with quarter-period symmetries.
"""
if prec > COS_SIN_CACHE_PREC:
return exponential_series(x, prec, 2)
precs = prec - COS_SIN_CACHE_STEP
t = x >> precs
n = int(t)
if n not in cos_sin_cache:
w = t<<(10+COS_SIN_CACHE_PREC-COS_SIN_CACHE_STEP)
cos_t, sin_t = exponential_series(w, 10+COS_SIN_CACHE_PREC, 2)
cos_sin_cache[n] = (cos_t>>10), (sin_t>>10)
cos_t, sin_t = cos_sin_cache[n]
offset = COS_SIN_CACHE_PREC - prec
cos_t >>= offset
sin_t >>= offset
x -= t << precs
cos = MPZ_ONE << prec
sin = x
k = 2
a = -((x*x) >> prec)
while a:
a //= k; cos += a; k += 1; a = (a*x) >> prec
a //= k; sin += a; k += 1; a = -((a*x) >> prec)
return ((cos*cos_t-sin*sin_t) >> prec), ((sin*cos_t+cos*sin_t) >> prec)
def mpf_exp(x, prec, rnd=round_fast):
sign, man, exp, bc = x
if man:
mag = bc + exp
wp = prec + 14
if sign:
man = -man
# TODO: the best cutoff depends on both x and the precision.
if prec > 600 and exp >= 0:
# Need about log2(exp(n)) ~= 1.45*mag extra precision
e = mpf_e(wp+int(1.45*mag))
return mpf_pow_int(e, man<<exp, prec, rnd)
if mag < -wp:
return mpf_perturb(fone, sign, prec, rnd)
# |x| >= 2
if mag > 1:
# For large arguments: exp(2^mag*(1+eps)) =
# exp(2^mag)*exp(2^mag*eps) = exp(2^mag)*(1 + 2^mag*eps + ...)
# so about mag extra bits is required.
wpmod = wp + mag
offset = exp + wpmod
if offset >= 0:
t = man << offset
else:
t = man >> (-offset)
lg2 = ln2_fixed(wpmod)
n, t = divmod(t, lg2)
n = int(n)
t >>= mag
else:
offset = exp + wp
if offset >= 0:
t = man << offset
else:
t = man >> (-offset)
n = 0
man = exp_basecase(t, wp)
return from_man_exp(man, n-wp, prec, rnd)
if not exp:
return fone
if x == fninf:
return fzero
return x
def mpf_cosh_sinh(x, prec, rnd=round_fast, tanh=0):
"""Simultaneously compute (cosh(x), sinh(x)) for real x"""
sign, man, exp, bc = x
if (not man) and exp:
if tanh:
if x == finf: return fone
if x == fninf: return fnone
return fnan
if x == finf: return (finf, finf)
if x == fninf: return (finf, fninf)
return fnan, fnan
mag = exp+bc
wp = prec+14
if mag < -4:
# Extremely close to 0, sinh(x) ~= x and cosh(x) ~= 1
if mag < -wp:
if tanh:
return mpf_perturb(x, 1-sign, prec, rnd)
cosh = mpf_perturb(fone, 0, prec, rnd)
sinh = mpf_perturb(x, sign, prec, rnd)
return cosh, sinh
# Fix for cancellation when computing sinh
wp += (-mag)
# Does exp(-2*x) vanish?
if mag > 10:
if 3*(1<<(mag-1)) > wp:
# XXX: rounding
if tanh:
return mpf_perturb([fone,fnone][sign], 1-sign, prec, rnd)
c = s = mpf_shift(mpf_exp(mpf_abs(x), prec, rnd), -1)
if sign:
s = mpf_neg(s)
return c, s
# |x| > 1
if mag > 1:
wpmod = wp + mag
offset = exp + wpmod
if offset >= 0:
t = man << offset
else:
t = man >> (-offset)
lg2 = ln2_fixed(wpmod)
n, t = divmod(t, lg2)
n = int(n)
t >>= mag
else:
offset = exp + wp
if offset >= 0:
t = man << offset
else:
t = man >> (-offset)
n = 0
a, b = exp_expneg_basecase(t, wp)
# TODO: optimize division precision
cosh = a + (b>>(2*n))
sinh = a - (b>>(2*n))
if sign:
sinh = -sinh
if tanh:
man = (sinh << wp) // cosh
return from_man_exp(man, -wp, prec, rnd)
else:
cosh = from_man_exp(cosh, n-wp-1, prec, rnd)
sinh = from_man_exp(sinh, n-wp-1, prec, rnd)
return cosh, sinh
def mod_pi2(man, exp, mag, wp):
# Reduce to standard interval
if mag > 0:
i = 0
while 1:
cancellation_prec = 20 << i
wpmod = wp + mag + cancellation_prec
pi2 = pi_fixed(wpmod-1)
pi4 = pi2 >> 1
offset = wpmod + exp
if offset >= 0:
t = man << offset
else:
t = man >> (-offset)
n, y = divmod(t, pi2)
if y > pi4:
small = pi2 - y
else:
small = y
if small >> (wp+mag-10):
n = int(n)
t = y >> mag
wp = wpmod - mag
break
i += 1
else:
wp += (-mag)
offset = exp + wp
if offset >= 0:
t = man << offset
else:
t = man >> (-offset)
n = 0
return t, n, wp
def mpf_cos_sin(x, prec, rnd=round_fast, which=0, pi=False):
"""
which:
0 -- return cos(x), sin(x)
1 -- return cos(x)
2 -- return sin(x)
3 -- return tan(x)
if pi=True, compute for pi*x
"""
sign, man, exp, bc = x
if not man:
if exp:
c, s = fnan, fnan
else:
c, s = fone, fzero
if which == 0: return c, s
if which == 1: return c
if which == 2: return s
if which == 3: return s
mag = bc + exp
wp = prec + 10
# Extremely small?
if mag < 0:
if mag < -wp:
if pi:
x = mpf_mul(x, mpf_pi(wp))
c = mpf_perturb(fone, 1, prec, rnd)
s = mpf_perturb(x, 1-sign, prec, rnd)
if which == 0: return c, s
if which == 1: return c
if which == 2: return s
if which == 3: return mpf_perturb(x, sign, prec, rnd)
if pi:
if exp >= -1:
if exp == -1:
c = fzero
s = (fone, fnone)[bool(man & 2) ^ sign]
elif exp == 0:
c, s = (fnone, fzero)
else:
c, s = (fone, fzero)
if which == 0: return c, s
if which == 1: return c
if which == 2: return s
if which == 3: return mpf_div(s, c, prec, rnd)
# Subtract nearest half-integer (= mod by pi/2)
n = ((man >> (-exp-2)) + 1) >> 1
man = man - (n << (-exp-1))
mag2 = bitcount(man) + exp
wp = prec + 10 - mag2
offset = exp + wp
if offset >= 0:
t = man << offset
else:
t = man >> (-offset)
t = (t*pi_fixed(wp)) >> wp
else:
t, n, wp = mod_pi2(man, exp, mag, wp)
c, s = cos_sin_basecase(t, wp)
m = n & 3
if m == 1: c, s = -s, c
elif m == 2: c, s = -c, -s
elif m == 3: c, s = s, -c
if sign:
s = -s
if which == 0:
c = from_man_exp(c, -wp, prec, rnd)
s = from_man_exp(s, -wp, prec, rnd)
return c, s
if which == 1:
return from_man_exp(c, -wp, prec, rnd)
if which == 2:
return from_man_exp(s, -wp, prec, rnd)
if which == 3:
return from_rational(s, c, prec, rnd)
def mpf_cos(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 1)
def mpf_sin(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 2)
def mpf_tan(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 3)
def mpf_cos_sin_pi(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 0, 1)
def mpf_cos_pi(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 1, 1)
def mpf_sin_pi(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 2, 1)
def mpf_cosh(x, prec, rnd=round_fast): return mpf_cosh_sinh(x, prec, rnd)[0]
def mpf_sinh(x, prec, rnd=round_fast): return mpf_cosh_sinh(x, prec, rnd)[1]
def mpf_tanh(x, prec, rnd=round_fast): return mpf_cosh_sinh(x, prec, rnd, tanh=1)
# Low-overhead fixed-point versions
def cos_sin_fixed(x, prec, pi2=None):
if pi2 is None:
pi2 = pi_fixed(prec-1)
n, t = divmod(x, pi2)
n = int(n)
c, s = cos_sin_basecase(t, prec)
m = n & 3
if m == 0: return c, s
if m == 1: return -s, c
if m == 2: return -c, -s
if m == 3: return s, -c
def exp_fixed(x, prec, ln2=None):
if ln2 is None:
ln2 = ln2_fixed(prec)
n, t = divmod(x, ln2)
n = int(n)
v = exp_basecase(t, prec)
if n >= 0:
return v << n
else:
return v >> (-n)
if BACKEND == 'sage':
try:
import sage.libs.mpmath.ext_libmp as _lbmp
mpf_sqrt = _lbmp.mpf_sqrt
mpf_exp = _lbmp.mpf_exp
mpf_log = _lbmp.mpf_log
mpf_cos = _lbmp.mpf_cos
mpf_sin = _lbmp.mpf_sin
mpf_pow = _lbmp.mpf_pow
exp_fixed = _lbmp.exp_fixed
cos_sin_fixed = _lbmp.cos_sin_fixed
log_int_fixed = _lbmp.log_int_fixed
except (ImportError, AttributeError):
print("Warning: Sage imports in libelefun failed")
|