File size: 13,285 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
"""
Algorithms for chordal graphs.

A graph is chordal if every cycle of length at least 4 has a chord
(an edge joining two nodes not adjacent in the cycle).
https://en.wikipedia.org/wiki/Chordal_graph
"""
import sys

import networkx as nx
from networkx.algorithms.components import connected_components
from networkx.utils import arbitrary_element, not_implemented_for

__all__ = [
    "is_chordal",
    "find_induced_nodes",
    "chordal_graph_cliques",
    "chordal_graph_treewidth",
    "NetworkXTreewidthBoundExceeded",
    "complete_to_chordal_graph",
]


class NetworkXTreewidthBoundExceeded(nx.NetworkXException):
    """Exception raised when a treewidth bound has been provided and it has
    been exceeded"""


@not_implemented_for("directed")
@not_implemented_for("multigraph")
@nx._dispatch
def is_chordal(G):
    """Checks whether G is a chordal graph.

    A graph is chordal if every cycle of length at least 4 has a chord
    (an edge joining two nodes not adjacent in the cycle).

    Parameters
    ----------
    G : graph
      A NetworkX graph.

    Returns
    -------
    chordal : bool
      True if G is a chordal graph and False otherwise.

    Raises
    ------
    NetworkXNotImplemented
        The algorithm does not support DiGraph, MultiGraph and MultiDiGraph.

    Examples
    --------
    >>> e = [
    ...     (1, 2),
    ...     (1, 3),
    ...     (2, 3),
    ...     (2, 4),
    ...     (3, 4),
    ...     (3, 5),
    ...     (3, 6),
    ...     (4, 5),
    ...     (4, 6),
    ...     (5, 6),
    ... ]
    >>> G = nx.Graph(e)
    >>> nx.is_chordal(G)
    True

    Notes
    -----
    The routine tries to go through every node following maximum cardinality
    search. It returns False when it finds that the separator for any node
    is not a clique.  Based on the algorithms in [1]_.

    Self loops are ignored.

    References
    ----------
    .. [1] R. E. Tarjan and M. Yannakakis, Simple linear-time algorithms
       to test chordality of graphs, test acyclicity of hypergraphs, and
       selectively reduce acyclic hypergraphs, SIAM J. Comput., 13 (1984),
       pp. 566–579.
    """
    if len(G.nodes) <= 3:
        return True
    return len(_find_chordality_breaker(G)) == 0


@nx._dispatch
def find_induced_nodes(G, s, t, treewidth_bound=sys.maxsize):
    """Returns the set of induced nodes in the path from s to t.

    Parameters
    ----------
    G : graph
      A chordal NetworkX graph
    s : node
        Source node to look for induced nodes
    t : node
        Destination node to look for induced nodes
    treewidth_bound: float
        Maximum treewidth acceptable for the graph H. The search
        for induced nodes will end as soon as the treewidth_bound is exceeded.

    Returns
    -------
    induced_nodes : Set of nodes
        The set of induced nodes in the path from s to t in G

    Raises
    ------
    NetworkXError
        The algorithm does not support DiGraph, MultiGraph and MultiDiGraph.
        If the input graph is an instance of one of these classes, a
        :exc:`NetworkXError` is raised.
        The algorithm can only be applied to chordal graphs. If the input
        graph is found to be non-chordal, a :exc:`NetworkXError` is raised.

    Examples
    --------
    >>> G = nx.Graph()
    >>> G = nx.generators.classic.path_graph(10)
    >>> induced_nodes = nx.find_induced_nodes(G, 1, 9, 2)
    >>> sorted(induced_nodes)
    [1, 2, 3, 4, 5, 6, 7, 8, 9]

    Notes
    -----
    G must be a chordal graph and (s,t) an edge that is not in G.

    If a treewidth_bound is provided, the search for induced nodes will end
    as soon as the treewidth_bound is exceeded.

    The algorithm is inspired by Algorithm 4 in [1]_.
    A formal definition of induced node can also be found on that reference.

    Self Loops are ignored

    References
    ----------
    .. [1] Learning Bounded Treewidth Bayesian Networks.
       Gal Elidan, Stephen Gould; JMLR, 9(Dec):2699--2731, 2008.
       http://jmlr.csail.mit.edu/papers/volume9/elidan08a/elidan08a.pdf
    """
    if not is_chordal(G):
        raise nx.NetworkXError("Input graph is not chordal.")

    H = nx.Graph(G)
    H.add_edge(s, t)
    induced_nodes = set()
    triplet = _find_chordality_breaker(H, s, treewidth_bound)
    while triplet:
        (u, v, w) = triplet
        induced_nodes.update(triplet)
        for n in triplet:
            if n != s:
                H.add_edge(s, n)
        triplet = _find_chordality_breaker(H, s, treewidth_bound)
    if induced_nodes:
        # Add t and the second node in the induced path from s to t.
        induced_nodes.add(t)
        for u in G[s]:
            if len(induced_nodes & set(G[u])) == 2:
                induced_nodes.add(u)
                break
    return induced_nodes


@nx._dispatch
def chordal_graph_cliques(G):
    """Returns all maximal cliques of a chordal graph.

    The algorithm breaks the graph in connected components and performs a
    maximum cardinality search in each component to get the cliques.

    Parameters
    ----------
    G : graph
      A NetworkX graph

    Yields
    ------
    frozenset of nodes
        Maximal cliques, each of which is a frozenset of
        nodes in `G`. The order of cliques is arbitrary.

    Raises
    ------
    NetworkXError
        The algorithm does not support DiGraph, MultiGraph and MultiDiGraph.
        The algorithm can only be applied to chordal graphs. If the input
        graph is found to be non-chordal, a :exc:`NetworkXError` is raised.

    Examples
    --------
    >>> e = [
    ...     (1, 2),
    ...     (1, 3),
    ...     (2, 3),
    ...     (2, 4),
    ...     (3, 4),
    ...     (3, 5),
    ...     (3, 6),
    ...     (4, 5),
    ...     (4, 6),
    ...     (5, 6),
    ...     (7, 8),
    ... ]
    >>> G = nx.Graph(e)
    >>> G.add_node(9)
    >>> cliques = [c for c in chordal_graph_cliques(G)]
    >>> cliques[0]
    frozenset({1, 2, 3})
    """
    for C in (G.subgraph(c).copy() for c in connected_components(G)):
        if C.number_of_nodes() == 1:
            if nx.number_of_selfloops(C) > 0:
                raise nx.NetworkXError("Input graph is not chordal.")
            yield frozenset(C.nodes())
        else:
            unnumbered = set(C.nodes())
            v = arbitrary_element(C)
            unnumbered.remove(v)
            numbered = {v}
            clique_wanna_be = {v}
            while unnumbered:
                v = _max_cardinality_node(C, unnumbered, numbered)
                unnumbered.remove(v)
                numbered.add(v)
                new_clique_wanna_be = set(C.neighbors(v)) & numbered
                sg = C.subgraph(clique_wanna_be)
                if _is_complete_graph(sg):
                    new_clique_wanna_be.add(v)
                    if not new_clique_wanna_be >= clique_wanna_be:
                        yield frozenset(clique_wanna_be)
                    clique_wanna_be = new_clique_wanna_be
                else:
                    raise nx.NetworkXError("Input graph is not chordal.")
            yield frozenset(clique_wanna_be)


@nx._dispatch
def chordal_graph_treewidth(G):
    """Returns the treewidth of the chordal graph G.

    Parameters
    ----------
    G : graph
      A NetworkX graph

    Returns
    -------
    treewidth : int
        The size of the largest clique in the graph minus one.

    Raises
    ------
    NetworkXError
        The algorithm does not support DiGraph, MultiGraph and MultiDiGraph.
        The algorithm can only be applied to chordal graphs. If the input
        graph is found to be non-chordal, a :exc:`NetworkXError` is raised.

    Examples
    --------
    >>> e = [
    ...     (1, 2),
    ...     (1, 3),
    ...     (2, 3),
    ...     (2, 4),
    ...     (3, 4),
    ...     (3, 5),
    ...     (3, 6),
    ...     (4, 5),
    ...     (4, 6),
    ...     (5, 6),
    ...     (7, 8),
    ... ]
    >>> G = nx.Graph(e)
    >>> G.add_node(9)
    >>> nx.chordal_graph_treewidth(G)
    3

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Tree_decomposition#Treewidth
    """
    if not is_chordal(G):
        raise nx.NetworkXError("Input graph is not chordal.")

    max_clique = -1
    for clique in nx.chordal_graph_cliques(G):
        max_clique = max(max_clique, len(clique))
    return max_clique - 1


def _is_complete_graph(G):
    """Returns True if G is a complete graph."""
    if nx.number_of_selfloops(G) > 0:
        raise nx.NetworkXError("Self loop found in _is_complete_graph()")
    n = G.number_of_nodes()
    if n < 2:
        return True
    e = G.number_of_edges()
    max_edges = (n * (n - 1)) / 2
    return e == max_edges


def _find_missing_edge(G):
    """Given a non-complete graph G, returns a missing edge."""
    nodes = set(G)
    for u in G:
        missing = nodes - set(list(G[u].keys()) + [u])
        if missing:
            return (u, missing.pop())


def _max_cardinality_node(G, choices, wanna_connect):
    """Returns a the node in choices that has more connections in G
    to nodes in wanna_connect.
    """
    max_number = -1
    for x in choices:
        number = len([y for y in G[x] if y in wanna_connect])
        if number > max_number:
            max_number = number
            max_cardinality_node = x
    return max_cardinality_node


def _find_chordality_breaker(G, s=None, treewidth_bound=sys.maxsize):
    """Given a graph G, starts a max cardinality search
    (starting from s if s is given and from an arbitrary node otherwise)
    trying to find a non-chordal cycle.

    If it does find one, it returns (u,v,w) where u,v,w are the three
    nodes that together with s are involved in the cycle.

    It ignores any self loops.
    """
    unnumbered = set(G)
    if s is None:
        s = arbitrary_element(G)
    unnumbered.remove(s)
    numbered = {s}
    current_treewidth = -1
    while unnumbered:  # and current_treewidth <= treewidth_bound:
        v = _max_cardinality_node(G, unnumbered, numbered)
        unnumbered.remove(v)
        numbered.add(v)
        clique_wanna_be = set(G[v]) & numbered
        sg = G.subgraph(clique_wanna_be)
        if _is_complete_graph(sg):
            # The graph seems to be chordal by now. We update the treewidth
            current_treewidth = max(current_treewidth, len(clique_wanna_be))
            if current_treewidth > treewidth_bound:
                raise nx.NetworkXTreewidthBoundExceeded(
                    f"treewidth_bound exceeded: {current_treewidth}"
                )
        else:
            # sg is not a clique,
            # look for an edge that is not included in sg
            (u, w) = _find_missing_edge(sg)
            return (u, v, w)
    return ()


@not_implemented_for("directed")
@nx._dispatch
def complete_to_chordal_graph(G):
    """Return a copy of G completed to a chordal graph

    Adds edges to a copy of G to create a chordal graph. A graph G=(V,E) is
    called chordal if for each cycle with length bigger than 3, there exist
    two non-adjacent nodes connected by an edge (called a chord).

    Parameters
    ----------
    G : NetworkX graph
        Undirected graph

    Returns
    -------
    H : NetworkX graph
        The chordal enhancement of G
    alpha : Dictionary
            The elimination ordering of nodes of G

    Notes
    -----
    There are different approaches to calculate the chordal
    enhancement of a graph. The algorithm used here is called
    MCS-M and gives at least minimal (local) triangulation of graph. Note
    that this triangulation is not necessarily a global minimum.

    https://en.wikipedia.org/wiki/Chordal_graph

    References
    ----------
    .. [1] Berry, Anne & Blair, Jean & Heggernes, Pinar & Peyton, Barry. (2004)
           Maximum Cardinality Search for Computing Minimal Triangulations of
           Graphs.  Algorithmica. 39. 287-298. 10.1007/s00453-004-1084-3.

    Examples
    --------
    >>> from networkx.algorithms.chordal import complete_to_chordal_graph
    >>> G = nx.wheel_graph(10)
    >>> H, alpha = complete_to_chordal_graph(G)
    """
    H = G.copy()
    alpha = {node: 0 for node in H}
    if nx.is_chordal(H):
        return H, alpha
    chords = set()
    weight = {node: 0 for node in H.nodes()}
    unnumbered_nodes = list(H.nodes())
    for i in range(len(H.nodes()), 0, -1):
        # get the node in unnumbered_nodes with the maximum weight
        z = max(unnumbered_nodes, key=lambda node: weight[node])
        unnumbered_nodes.remove(z)
        alpha[z] = i
        update_nodes = []
        for y in unnumbered_nodes:
            if G.has_edge(y, z):
                update_nodes.append(y)
            else:
                # y_weight will be bigger than node weights between y and z
                y_weight = weight[y]
                lower_nodes = [
                    node for node in unnumbered_nodes if weight[node] < y_weight
                ]
                if nx.has_path(H.subgraph(lower_nodes + [z, y]), y, z):
                    update_nodes.append(y)
                    chords.add((z, y))
        # during calculation of paths the weights should not be updated
        for node in update_nodes:
            weight[node] += 1
    H.add_edges_from(chords)
    return H, alpha