File size: 19,339 Bytes
122d3ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
# This file is part of h5py, a Python interface to the HDF5 library.
#
# http://www.h5py.org
#
# Copyright 2008-2013 Andrew Collette and contributors
#
# License:  Standard 3-clause BSD; see "license.txt" for full license terms
#           and contributor agreement.

"""

    Tests the h5py.Dataset.__getitem__ method.



    This module does not specifically test type conversion.  The "type" axis

    therefore only tests objects which interact with the slicing system in

    unreliable ways; for example, compound and array types.



    See test_dataset_getitem_types for type-conversion tests.



    Tests are organized into TestCases by dataset shape and type.  Test

    methods vary by slicing arg type.



    1. Dataset shape:

        Empty

        Scalar

        1D

        3D



    2. Type:

        Float

        Compound

        Array



    3. Slicing arg types:

        Ellipsis

        Empty tuple

        Regular slice

        MultiBlockSlice

        Indexing

        Index list

        Boolean mask

        Field names

"""

import sys

import numpy as np
import h5py

from .common import ut, TestCase


class TestEmpty(TestCase):

    def setUp(self):
        TestCase.setUp(self)
        sid = h5py.h5s.create(h5py.h5s.NULL)
        tid = h5py.h5t.C_S1.copy()
        tid.set_size(10)
        dsid = h5py.h5d.create(self.f.id, b'x', tid, sid)
        self.dset = h5py.Dataset(dsid)
        self.empty_obj = h5py.Empty(np.dtype("S10"))

    def test_ndim(self):
        """ Verify number of dimensions """
        self.assertEqual(self.dset.ndim, 0)

    def test_shape(self):
        """ Verify shape """
        self.assertEqual(self.dset.shape, None)

    def test_size(self):
        """ Verify shape """
        self.assertEqual(self.dset.size, None)

    def test_nbytes(self):
        """ Verify nbytes """
        self.assertEqual(self.dset.nbytes, 0)

    def test_ellipsis(self):
        self.assertEqual(self.dset[...], self.empty_obj)

    def test_tuple(self):
        self.assertEqual(self.dset[()], self.empty_obj)

    def test_slice(self):
        """ slice -> ValueError """
        with self.assertRaises(ValueError):
            self.dset[0:4]

    def test_multi_block_slice(self):
        """ MultiBlockSlice -> ValueError """
        with self.assertRaises(ValueError):
            self.dset[h5py.MultiBlockSlice()]

    def test_index(self):
        """ index -> ValueError """
        with self.assertRaises(ValueError):
            self.dset[0]

    def test_indexlist(self):
        """ index list -> ValueError """
        with self.assertRaises(ValueError):
            self.dset[[1,2,5]]

    def test_mask(self):
        """ mask -> ValueError """
        mask = np.array(True, dtype='bool')
        with self.assertRaises(ValueError):
            self.dset[mask]

    def test_fieldnames(self):
        """ field name -> ValueError """
        with self.assertRaises(ValueError):
            self.dset['field']


class TestScalarFloat(TestCase):

    def setUp(self):
        TestCase.setUp(self)
        self.data = np.array(42.5, dtype=np.double)
        self.dset = self.f.create_dataset('x', data=self.data)

    def test_ndim(self):
        """ Verify number of dimensions """
        self.assertEqual(self.dset.ndim, 0)

    def test_size(self):
        """ Verify size """
        self.assertEqual(self.dset.size, 1)

    def test_nbytes(self):
        """ Verify nbytes """
        self.assertEqual(self.dset.nbytes, self.data.dtype.itemsize)  # not sure if 'f' is always alias for 'f4'

    def test_shape(self):
        """ Verify shape """
        self.assertEqual(self.dset.shape, tuple())

    def test_ellipsis(self):
        """ Ellipsis -> scalar ndarray """
        out = self.dset[...]
        self.assertArrayEqual(out, self.data)

    def test_tuple(self):
        """ () -> bare item """
        out = self.dset[()]
        self.assertArrayEqual(out, self.data.item())

    def test_slice(self):
        """ slice -> ValueError """
        with self.assertRaises(ValueError):
            self.dset[0:4]

    def test_multi_block_slice(self):
        """ MultiBlockSlice -> ValueError """
        with self.assertRaises(ValueError):
            self.dset[h5py.MultiBlockSlice()]

    def test_index(self):
        """ index -> ValueError """
        with self.assertRaises(ValueError):
            self.dset[0]

    # FIXME: NumPy has IndexError instead
    def test_indexlist(self):
        """ index list -> ValueError """
        with self.assertRaises(ValueError):
            self.dset[[1,2,5]]

    # FIXME: NumPy permits this
    def test_mask(self):
        """ mask -> ValueError """
        mask = np.array(True, dtype='bool')
        with self.assertRaises(ValueError):
            self.dset[mask]

    def test_fieldnames(self):
        """ field name -> ValueError (no fields) """
        with self.assertRaises(ValueError):
            self.dset['field']


class TestScalarCompound(TestCase):

    def setUp(self):
        TestCase.setUp(self)
        self.data = np.array((42.5, -118, "Hello"), dtype=[('a', 'f'), ('b', 'i'), ('c', '|S10')])
        self.dset = self.f.create_dataset('x', data=self.data)

    def test_ndim(self):
        """ Verify number of dimensions """
        self.assertEqual(self.dset.ndim, 0)

    def test_shape(self):
        """ Verify shape """
        self.assertEqual(self.dset.shape, tuple())

    def test_size(self):
        """ Verify size """
        self.assertEqual(self.dset.size, 1)

    def test_nbytes(self):
        """ Verify nbytes """
        self.assertEqual(self.dset.nbytes, self.data.dtype.itemsize)

    def test_ellipsis(self):
        """ Ellipsis -> scalar ndarray """
        out = self.dset[...]
        # assertArrayEqual doesn't work with compounds; do manually
        self.assertIsInstance(out, np.ndarray)
        self.assertEqual(out.shape, self.data.shape)
        self.assertEqual(out.dtype, self.data.dtype)

    def test_tuple(self):
        """ () -> np.void instance """
        out = self.dset[()]
        self.assertIsInstance(out, np.void)
        self.assertEqual(out.dtype, self.data.dtype)

    def test_slice(self):
        """ slice -> ValueError """
        with self.assertRaises(ValueError):
            self.dset[0:4]

    def test_multi_block_slice(self):
        """ MultiBlockSlice -> ValueError """
        with self.assertRaises(ValueError):
            self.dset[h5py.MultiBlockSlice()]

    def test_index(self):
        """ index -> ValueError """
        with self.assertRaises(ValueError):
            self.dset[0]

    # FIXME: NumPy has IndexError instead
    def test_indexlist(self):
        """ index list -> ValueError """
        with self.assertRaises(ValueError):
            self.dset[[1,2,5]]

    # FIXME: NumPy permits this
    def test_mask(self):
        """ mask -> ValueError  """
        mask = np.array(True, dtype='bool')
        with self.assertRaises(ValueError):
            self.dset[mask]

    # FIXME: NumPy returns a scalar ndarray
    def test_fieldnames(self):
        """ field name -> bare value """
        out = self.dset['a']
        self.assertIsInstance(out, np.float32)
        self.assertEqual(out, self.dset['a'])


class TestScalarArray(TestCase):

    def setUp(self):
        TestCase.setUp(self)
        self.dt = np.dtype('(3,2)f')
        self.data = np.array([(3.2, -119), (42, 99.8), (3.14, 0)], dtype='f')
        self.dset = self.f.create_dataset('x', (), dtype=self.dt)
        self.dset[...] = self.data

    def test_ndim(self):
        """ Verify number of dimensions """
        self.assertEqual(self.data.ndim, 2)
        self.assertEqual(self.dset.ndim, 0)

    def test_size(self):
        """ Verify size """
        self.assertEqual(self.dset.size, 1)

    def test_nbytes(self):
        """ Verify nbytes """
        self.assertEqual(self.dset.nbytes, self.dset.dtype.itemsize)  # not sure if 'f' is always alias for 'f4'

    def test_shape(self):
        """ Verify shape """
        self.assertEqual(self.data.shape, (3, 2))
        self.assertEqual(self.dset.shape, tuple())

    def test_ellipsis(self):
        """ Ellipsis -> ndarray promoted to underlying shape """
        out = self.dset[...]
        self.assertArrayEqual(out, self.data)

    def test_tuple(self):
        """ () -> same as ellipsis """
        out = self.dset[...]
        self.assertArrayEqual(out, self.data)

    def test_slice(self):
        """ slice -> ValueError """
        with self.assertRaises(ValueError):
            self.dset[0:4]

    def test_multi_block_slice(self):
        """ MultiBlockSlice -> ValueError """
        with self.assertRaises(ValueError):
            self.dset[h5py.MultiBlockSlice()]

    def test_index(self):
        """ index -> ValueError """
        with self.assertRaises(ValueError):
            self.dset[0]

    def test_indexlist(self):
        """ index list -> ValueError """
        with self.assertRaises(ValueError):
            self.dset[[]]

    def test_mask(self):
        """ mask -> ValueError """
        mask = np.array(True, dtype='bool')
        with self.assertRaises(ValueError):
            self.dset[mask]

    def test_fieldnames(self):
        """ field name -> ValueError (no fields) """
        with self.assertRaises(ValueError):
            self.dset['field']


class Test1DZeroFloat(TestCase):

    def setUp(self):
        TestCase.setUp(self)
        self.data = np.ones((0,), dtype='f')
        self.dset = self.f.create_dataset('x', data=self.data)

    def test_ndim(self):
        """ Verify number of dimensions """
        self.assertEqual(self.dset.ndim, 1)

    def test_shape(self):
        """ Verify shape """
        self.assertEqual(self.dset.shape, (0,))

    def test_ellipsis(self):
        """ Ellipsis -> ndarray of matching shape """
        self.assertNumpyBehavior(self.dset, self.data, np.s_[...])

    def test_tuple(self):
        """ () -> same as ellipsis """
        self.assertNumpyBehavior(self.dset, self.data, np.s_[()])

    def test_slice(self):
        """ slice -> ndarray of shape (0,) """
        self.assertNumpyBehavior(self.dset, self.data, np.s_[0:4])

    def test_slice_stop_less_than_start(self):
        self.assertNumpyBehavior(self.dset, self.data, np.s_[7:5])

    def test_index(self):
        """ index -> out of range """
        with self.assertRaises(IndexError):
            self.dset[0]

    def test_indexlist(self):
        """ index list """
        self.assertNumpyBehavior(self.dset, self.data, np.s_[[]])

    def test_mask(self):
        """ mask -> ndarray of matching shape """
        mask = np.ones((0,), dtype='bool')
        self.assertNumpyBehavior(
            self.dset,
            self.data,
            np.s_[mask],
            # Fast reader doesn't work with boolean masks
            skip_fast_reader=True,
        )

    def test_fieldnames(self):
        """ field name -> ValueError (no fields) """
        with self.assertRaises(ValueError):
            self.dset['field']


class Test1DFloat(TestCase):

    def setUp(self):
        TestCase.setUp(self)
        self.data = np.arange(13).astype('f')
        self.dset = self.f.create_dataset('x', data=self.data)

    def test_ndim(self):
        """ Verify number of dimensions """
        self.assertEqual(self.dset.ndim, 1)

    def test_shape(self):
        """ Verify shape """
        self.assertEqual(self.dset.shape, (13,))

    def test_ellipsis(self):
        self.assertNumpyBehavior(self.dset, self.data, np.s_[...])

    def test_tuple(self):
        self.assertNumpyBehavior(self.dset, self.data, np.s_[()])

    def test_slice_simple(self):
        self.assertNumpyBehavior(self.dset, self.data, np.s_[0:4])

    def test_slice_zerosize(self):
        self.assertNumpyBehavior(self.dset, self.data, np.s_[4:4])

    def test_slice_strides(self):
        self.assertNumpyBehavior(self.dset, self.data, np.s_[1:7:3])

    def test_slice_negindexes(self):
        self.assertNumpyBehavior(self.dset, self.data, np.s_[-8:-2:3])

    def test_slice_stop_less_than_start(self):
        self.assertNumpyBehavior(self.dset, self.data, np.s_[7:5])

    def test_slice_outofrange(self):
        self.assertNumpyBehavior(self.dset, self.data, np.s_[100:400:3])

    def test_slice_backwards(self):
        """ we disallow negative steps """
        with self.assertRaises(ValueError):
            self.dset[::-1]

    def test_slice_zerostride(self):
        self.assertNumpyBehavior(self.dset, self.data, np.s_[::0])

    def test_index_simple(self):
        self.assertNumpyBehavior(self.dset, self.data, np.s_[3])

    def test_index_neg(self):
        self.assertNumpyBehavior(self.dset, self.data, np.s_[-4])

    # FIXME: NumPy permits this... it adds a new axis in front
    def test_index_none(self):
        with self.assertRaises(TypeError):
            self.dset[None]

    def test_index_illegal(self):
        """ Illegal slicing argument """
        with self.assertRaises(TypeError):
            self.dset[{}]

    def test_index_outofrange(self):
        with self.assertRaises(IndexError):
            self.dset[100]

    def test_indexlist_simple(self):
        self.assertNumpyBehavior(self.dset, self.data, np.s_[[1,2,5]])

    def test_indexlist_numpyarray(self):
        self.assertNumpyBehavior(self.dset, self.data, np.s_[np.array([1, 2, 5])])

    def test_indexlist_single_index_ellipsis(self):
        self.assertNumpyBehavior(self.dset, self.data, np.s_[[0], ...])

    def test_indexlist_numpyarray_single_index_ellipsis(self):
        self.assertNumpyBehavior(self.dset, self.data, np.s_[np.array([0]), ...])

    def test_indexlist_numpyarray_ellipsis(self):
        self.assertNumpyBehavior(self.dset, self.data, np.s_[np.array([1, 2, 5]), ...])

    def test_indexlist_empty(self):
        self.assertNumpyBehavior(self.dset, self.data, np.s_[[]])

    def test_indexlist_outofrange(self):
        with self.assertRaises(IndexError):
            self.dset[[100]]

    def test_indexlist_nonmonotonic(self):
        """ we require index list values to be strictly increasing """
        with self.assertRaises(TypeError):
            self.dset[[1,3,2]]

    def test_indexlist_monotonic_negative(self):
        # This should work: indices are logically increasing
        self.assertNumpyBehavior(self.dset, self.data,  np.s_[[0, 2, -2]])

        with self.assertRaises(TypeError):
            self.dset[[-2, -3]]

    def test_indexlist_repeated(self):
        """ we forbid repeated index values """
        with self.assertRaises(TypeError):
            self.dset[[1,1,2]]

    def test_mask_true(self):
        self.assertNumpyBehavior(
            self.dset,
            self.data,
            np.s_[self.data > -100],
            # Fast reader doesn't work with boolean masks
            skip_fast_reader=True,
        )

    def test_mask_false(self):
        self.assertNumpyBehavior(
            self.dset,
            self.data,
            np.s_[self.data > 100],
            # Fast reader doesn't work with boolean masks
            skip_fast_reader=True,
        )

    def test_mask_partial(self):
        self.assertNumpyBehavior(
            self.dset,
            self.data,
            np.s_[self.data > 5],
            # Fast reader doesn't work with boolean masks
            skip_fast_reader=True,
        )

    def test_mask_wrongsize(self):
        """ we require the boolean mask shape to match exactly """
        with self.assertRaises(TypeError):
            self.dset[np.ones((2,), dtype='bool')]

    def test_fieldnames(self):
        """ field name -> ValueError (no fields) """
        with self.assertRaises(ValueError):
            self.dset['field']


class Test2DZeroFloat(TestCase):

    def setUp(self):
        TestCase.setUp(self)
        self.data = np.ones((0,3), dtype='f')
        self.dset = self.f.create_dataset('x', data=self.data)

    def test_ndim(self):
        """ Verify number of dimensions """
        self.assertEqual(self.dset.ndim, 2)

    def test_shape(self):
        """ Verify shape """
        self.assertEqual(self.dset.shape, (0, 3))

    def test_indexlist(self):
        """ see issue #473 """
        self.assertNumpyBehavior(self.dset, self.data, np.s_[:,[0,1,2]])


class Test2DFloat(TestCase):

    def setUp(self):
        TestCase.setUp(self)
        self.data = np.ones((5,3), dtype='f')
        self.dset = self.f.create_dataset('x', data=self.data)

    def test_ndim(self):
        """ Verify number of dimensions """
        self.assertEqual(self.dset.ndim, 2)

    def test_size(self):
        """ Verify size """
        self.assertEqual(self.dset.size, 15)

    def test_nbytes(self):
        """ Verify nbytes """
        self.assertEqual(self.dset.nbytes, 15*self.data.dtype.itemsize)  # not sure if 'f' is always alias for 'f4'

    def test_shape(self):
        """ Verify shape """
        self.assertEqual(self.dset.shape, (5, 3))

    def test_indexlist(self):
        """ see issue #473 """
        self.assertNumpyBehavior(self.dset, self.data, np.s_[:,[0,1,2]])

    def test_index_emptylist(self):
        self.assertNumpyBehavior(self.dset, self.data, np.s_[:, []])
        self.assertNumpyBehavior(self.dset, self.data, np.s_[[]])


class TestVeryLargeArray(TestCase):

    def setUp(self):
        TestCase.setUp(self)
        self.dset = self.f.create_dataset('x', shape=(2**15, 2**16))

    @ut.skipIf(sys.maxsize < 2**31, 'Maximum integer size >= 2**31 required')
    def test_size(self):
        self.assertEqual(self.dset.size, 2**31)


def test_read_no_fill_value(writable_file):
    # With FILL_TIME_NEVER, HDF5 doesn't write zeros in the output array for
    # unallocated chunks. If we read into uninitialized memory, it can appear
    # to read random values. https://github.com/h5py/h5py/issues/2069
    dcpl = h5py.h5p.create(h5py.h5p.DATASET_CREATE)
    dcpl.set_chunk((1,))
    dcpl.set_fill_time(h5py.h5d.FILL_TIME_NEVER)
    ds = h5py.Dataset(h5py.h5d.create(
        writable_file.id, b'a', h5py.h5t.IEEE_F64LE, h5py.h5s.create_simple((5,)), dcpl
    ))
    np.testing.assert_array_equal(ds[:3], np.zeros(3, np.float64))


class TestBoolIndex(TestCase):
    """

    Tests for indexing with Boolean arrays

    """
    def setUp(self):
        super().setUp()
        self.arr = np.arange(9).reshape(3,-1)
        self.dset = self.f.create_dataset('x', data=self.arr)

    def test_select_first_axis(self):
        sel = np.s_[[False, True, False],:]
        self.assertNumpyBehavior(self.dset, self.arr, sel)

    def test_wrong_size(self):
        sel = np.s_[[False, True, False, False],:]
        with self.assertRaises(TypeError):
            self.dset[sel]