File size: 5,273 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
from ..libmp.backend import xrange
from .functions import defun, defun_wrapped

@defun
def gammaprod(ctx, a, b, _infsign=False):
    a = [ctx.convert(x) for x in a]
    b = [ctx.convert(x) for x in b]
    poles_num = []
    poles_den = []
    regular_num = []
    regular_den = []
    for x in a: [regular_num, poles_num][ctx.isnpint(x)].append(x)
    for x in b: [regular_den, poles_den][ctx.isnpint(x)].append(x)
    # One more pole in numerator or denominator gives 0 or inf
    if len(poles_num) < len(poles_den): return ctx.zero
    if len(poles_num) > len(poles_den):
        # Get correct sign of infinity for x+h, h -> 0 from above
        # XXX: hack, this should be done properly
        if _infsign:
            a = [x and x*(1+ctx.eps) or x+ctx.eps for x in poles_num]
            b = [x and x*(1+ctx.eps) or x+ctx.eps for x in poles_den]
            return ctx.sign(ctx.gammaprod(a+regular_num,b+regular_den)) * ctx.inf
        else:
            return ctx.inf
    # All poles cancel
    # lim G(i)/G(j) = (-1)**(i+j) * gamma(1-j) / gamma(1-i)
    p = ctx.one
    orig = ctx.prec
    try:
        ctx.prec = orig + 15
        while poles_num:
            i = poles_num.pop()
            j = poles_den.pop()
            p *= (-1)**(i+j) * ctx.gamma(1-j) / ctx.gamma(1-i)
        for x in regular_num: p *= ctx.gamma(x)
        for x in regular_den: p /= ctx.gamma(x)
    finally:
        ctx.prec = orig
    return +p

@defun
def beta(ctx, x, y):
    x = ctx.convert(x)
    y = ctx.convert(y)
    if ctx.isinf(y):
        x, y = y, x
    if ctx.isinf(x):
        if x == ctx.inf and not ctx._im(y):
            if y == ctx.ninf:
                return ctx.nan
            if y > 0:
                return ctx.zero
            if ctx.isint(y):
                return ctx.nan
            if y < 0:
                return ctx.sign(ctx.gamma(y)) * ctx.inf
        return ctx.nan
    xy = ctx.fadd(x, y, prec=2*ctx.prec)
    return ctx.gammaprod([x, y], [xy])

@defun
def binomial(ctx, n, k):
    n1 = ctx.fadd(n, 1, prec=2*ctx.prec)
    k1 = ctx.fadd(k, 1, prec=2*ctx.prec)
    nk1 = ctx.fsub(n1, k, prec=2*ctx.prec)
    return ctx.gammaprod([n1], [k1, nk1])

@defun
def rf(ctx, x, n):
    xn = ctx.fadd(x, n, prec=2*ctx.prec)
    return ctx.gammaprod([xn], [x])

@defun
def ff(ctx, x, n):
    x1 = ctx.fadd(x, 1, prec=2*ctx.prec)
    xn1 = ctx.fadd(ctx.fsub(x, n, prec=2*ctx.prec), 1, prec=2*ctx.prec)
    return ctx.gammaprod([x1], [xn1])

@defun_wrapped
def fac2(ctx, x):
    if ctx.isinf(x):
        if x == ctx.inf:
            return x
        return ctx.nan
    return 2**(x/2)*(ctx.pi/2)**((ctx.cospi(x)-1)/4)*ctx.gamma(x/2+1)

@defun_wrapped
def barnesg(ctx, z):
    if ctx.isinf(z):
        if z == ctx.inf:
            return z
        return ctx.nan
    if ctx.isnan(z):
        return z
    if (not ctx._im(z)) and ctx._re(z) <= 0 and ctx.isint(ctx._re(z)):
        return z*0
    # Account for size (would not be needed if computing log(G))
    if abs(z) > 5:
        ctx.dps += 2*ctx.log(abs(z),2)
    # Reflection formula
    if ctx.re(z) < -ctx.dps:
        w = 1-z
        pi2 = 2*ctx.pi
        u = ctx.expjpi(2*w)
        v = ctx.j*ctx.pi/12 - ctx.j*ctx.pi*w**2/2 + w*ctx.ln(1-u) - \
            ctx.j*ctx.polylog(2, u)/pi2
        v = ctx.barnesg(2-z)*ctx.exp(v)/pi2**w
        if ctx._is_real_type(z):
            v = ctx._re(v)
        return v
    # Estimate terms for asymptotic expansion
    # TODO: fixme, obviously
    N = ctx.dps // 2 + 5
    G = 1
    while abs(z) < N or ctx.re(z) < 1:
        G /= ctx.gamma(z)
        z += 1
    z -= 1
    s = ctx.mpf(1)/12
    s -= ctx.log(ctx.glaisher)
    s += z*ctx.log(2*ctx.pi)/2
    s += (z**2/2-ctx.mpf(1)/12)*ctx.log(z)
    s -= 3*z**2/4
    z2k = z2 = z**2
    for k in xrange(1, N+1):
        t = ctx.bernoulli(2*k+2) / (4*k*(k+1)*z2k)
        if abs(t) < ctx.eps:
            #print k, N      # check how many terms were needed
            break
        z2k *= z2
        s += t
    #if k == N:
    #    print "warning: series for barnesg failed to converge", ctx.dps
    return G*ctx.exp(s)

@defun
def superfac(ctx, z):
    return ctx.barnesg(z+2)

@defun_wrapped
def hyperfac(ctx, z):
    # XXX: estimate needed extra bits accurately
    if z == ctx.inf:
        return z
    if abs(z) > 5:
        extra = 4*int(ctx.log(abs(z),2))
    else:
        extra = 0
    ctx.prec += extra
    if not ctx._im(z) and ctx._re(z) < 0 and ctx.isint(ctx._re(z)):
        n = int(ctx.re(z))
        h = ctx.hyperfac(-n-1)
        if ((n+1)//2) & 1:
            h = -h
        if ctx._is_complex_type(z):
            return h + 0j
        return h
    zp1 = z+1
    # Wrong branch cut
    #v = ctx.gamma(zp1)**z
    #ctx.prec -= extra
    #return v / ctx.barnesg(zp1)
    v = ctx.exp(z*ctx.loggamma(zp1))
    ctx.prec -= extra
    return v / ctx.barnesg(zp1)

'''
@defun
def psi0(ctx, z):
    """Shortcut for psi(0,z) (the digamma function)"""
    return ctx.psi(0, z)

@defun
def psi1(ctx, z):
    """Shortcut for psi(1,z) (the trigamma function)"""
    return ctx.psi(1, z)

@defun
def psi2(ctx, z):
    """Shortcut for psi(2,z) (the tetragamma function)"""
    return ctx.psi(2, z)

@defun
def psi3(ctx, z):
    """Shortcut for psi(3,z) (the pentagamma function)"""
    return ctx.psi(3, z)
'''