File size: 2,047 Bytes
ed1cdd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
'''

    item: one piece of data
    item_name: data id
    wavfn: wave file path
    txt: lyrics
    ph: phoneme
    tgfn: text grid file path (unused)
    spk: dataset name
    wdb: word boundary
    ph_durs: phoneme durations
    midi: pitch as midi notes
    midi_dur: midi duration
    is_slur: keep singing upon note changes
'''


from copy import deepcopy

import logging

from preprocessing.process_pipeline import File2Batch
from utils.hparams import hparams
from preprocessing.base_binarizer import BaseBinarizer

SVCSINGING_ITEM_ATTRIBUTES = ['wav_fn', 'spk_id']
class SVCBinarizer(BaseBinarizer):
    def __init__(self, item_attributes=SVCSINGING_ITEM_ATTRIBUTES):
        super().__init__(item_attributes)
        print('spkers: ', set(item['spk_id'] for item in self.items.values()))
        self.item_names = sorted(list(self.items.keys()))
        self._train_item_names, self._test_item_names = self.split_train_test_set(self.item_names)
        # self._valid_item_names=[]

    def split_train_test_set(self, item_names):
        item_names = deepcopy(item_names)
        if hparams['choose_test_manually']:
            test_item_names = [x for x in item_names if any([x.startswith(ts) for ts in hparams['test_prefixes']])]
        else:
            test_item_names = item_names[-5:]
        train_item_names = [x for x in item_names if x not in set(test_item_names)]
        logging.info("train {}".format(len(train_item_names)))
        logging.info("test {}".format(len(test_item_names)))
        return train_item_names, test_item_names
    
    @property
    def train_item_names(self):
        return self._train_item_names

    @property
    def valid_item_names(self):
        return self._test_item_names

    @property
    def test_item_names(self):
        return self._test_item_names

    def load_meta_data(self):
        self.items = File2Batch.file2temporary_dict()
    
    def _phone_encoder(self):
        from preprocessing.hubertinfer import Hubertencoder
        return Hubertencoder(hparams['hubert_path'])