Spaces:
Configuration error
Configuration error
File size: 9,060 Bytes
ed1cdd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import os
from webbrowser import get
os.environ["OMP_NUM_THREADS"] = "1"
import yaml
from utils.multiprocess_utils import chunked_multiprocess_run
import random
import json
# from resemblyzer import VoiceEncoder
from tqdm import tqdm
from preprocessing.data_gen_utils import get_mel2ph, get_pitch_parselmouth, build_phone_encoder,get_pitch_crepe
from utils.hparams import set_hparams, hparams
import numpy as np
from utils.indexed_datasets import IndexedDatasetBuilder
class BinarizationError(Exception):
pass
BASE_ITEM_ATTRIBUTES = ['txt', 'ph', 'wav_fn', 'tg_fn', 'spk_id']
class BaseBinarizer:
'''
Base class for data processing.
1. *process* and *process_data_split*:
process entire data, generate the train-test split (support parallel processing);
2. *process_item*:
process singe piece of data;
3. *get_pitch*:
infer the pitch using some algorithm;
4. *get_align*:
get the alignment using 'mel2ph' format (see https://arxiv.org/abs/1905.09263).
5. phoneme encoder, voice encoder, etc.
Subclasses should define:
1. *load_metadata*:
how to read multiple datasets from files;
2. *train_item_names*, *valid_item_names*, *test_item_names*:
how to split the dataset;
3. load_ph_set:
the phoneme set.
'''
def __init__(self, item_attributes=BASE_ITEM_ATTRIBUTES):
self.binarization_args = hparams['binarization_args']
#self.pre_align_args = hparams['pre_align_args']
self.items = {}
# every item in self.items has some attributes
self.item_attributes = item_attributes
self.load_meta_data()
# check program correctness 检查itemdict的key只能在给定的列表中取值
assert all([attr in self.item_attributes for attr in list(self.items.values())[0].keys()])
self.item_names = sorted(list(self.items.keys()))
if self.binarization_args['shuffle']:
random.seed(1234)
random.shuffle(self.item_names)
# set default get_pitch algorithm
if hparams['use_crepe']:
self.get_pitch_algorithm = get_pitch_crepe
else:
self.get_pitch_algorithm = get_pitch_parselmouth
def load_meta_data(self):
raise NotImplementedError
@property
def train_item_names(self):
raise NotImplementedError
@property
def valid_item_names(self):
raise NotImplementedError
@property
def test_item_names(self):
raise NotImplementedError
def build_spk_map(self):
spk_map = set()
for item_name in self.item_names:
spk_name = self.items[item_name]['spk_id']
spk_map.add(spk_name)
spk_map = {x: i for i, x in enumerate(sorted(list(spk_map)))}
assert len(spk_map) == 0 or len(spk_map) <= hparams['num_spk'], len(spk_map)
return spk_map
def item_name2spk_id(self, item_name):
return self.spk_map[self.items[item_name]['spk_id']]
def _phone_encoder(self):
'''
use hubert encoder
'''
raise NotImplementedError
'''
create 'phone_set.json' file if it doesn't exist
'''
ph_set_fn = f"{hparams['binary_data_dir']}/phone_set.json"
ph_set = []
if hparams['reset_phone_dict'] or not os.path.exists(ph_set_fn):
self.load_ph_set(ph_set)
ph_set = sorted(set(ph_set))
json.dump(ph_set, open(ph_set_fn, 'w', encoding='utf-8'))
print("| Build phone set: ", ph_set)
else:
ph_set = json.load(open(ph_set_fn, 'r', encoding='utf-8'))
print("| Load phone set: ", ph_set)
return build_phone_encoder(hparams['binary_data_dir'])
def load_ph_set(self, ph_set):
raise NotImplementedError
def meta_data_iterator(self, prefix):
if prefix == 'valid':
item_names = self.valid_item_names
elif prefix == 'test':
item_names = self.test_item_names
else:
item_names = self.train_item_names
for item_name in item_names:
meta_data = self.items[item_name]
yield item_name, meta_data
def process(self):
os.makedirs(hparams['binary_data_dir'], exist_ok=True)
self.spk_map = self.build_spk_map()
print("| spk_map: ", self.spk_map)
spk_map_fn = f"{hparams['binary_data_dir']}/spk_map.json"
json.dump(self.spk_map, open(spk_map_fn, 'w', encoding='utf-8'))
self.phone_encoder =self._phone_encoder()
self.process_data_split('valid')
self.process_data_split('test')
self.process_data_split('train')
def process_data_split(self, prefix):
data_dir = hparams['binary_data_dir']
args = []
builder = IndexedDatasetBuilder(f'{data_dir}/{prefix}')
lengths = []
f0s = []
total_sec = 0
# if self.binarization_args['with_spk_embed']:
# voice_encoder = VoiceEncoder().cuda()
for item_name, meta_data in self.meta_data_iterator(prefix):
args.append([item_name, meta_data, self.binarization_args])
spec_min=[]
spec_max=[]
# code for single cpu processing
for i in tqdm(reversed(range(len(args))), total=len(args)):
a = args[i]
item = self.process_item(*a)
if item is None:
continue
spec_min.append(item['spec_min'])
spec_max.append(item['spec_max'])
# item['spk_embe'] = voice_encoder.embed_utterance(item['wav']) \
# if self.binardization_args['with_spk_embed'] else None
if not self.binarization_args['with_wav'] and 'wav' in item:
if hparams['debug']:
print("del wav")
del item['wav']
if(hparams['debug']):
print(item)
builder.add_item(item)
lengths.append(item['len'])
total_sec += item['sec']
# if item.get('f0') is not None:
# f0s.append(item['f0'])
if prefix=='train':
spec_max=np.max(spec_max,0)
spec_min=np.min(spec_min,0)
print(spec_max.shape)
with open(hparams['config_path'], encoding='utf-8') as f:
_hparams=yaml.safe_load(f)
_hparams['spec_max']=spec_max.tolist()
_hparams['spec_min']=spec_min.tolist()
with open(hparams['config_path'], 'w', encoding='utf-8') as f:
yaml.safe_dump(_hparams,f)
builder.finalize()
np.save(f'{data_dir}/{prefix}_lengths.npy', lengths)
if len(f0s) > 0:
f0s = np.concatenate(f0s, 0)
f0s = f0s[f0s != 0]
np.save(f'{data_dir}/{prefix}_f0s_mean_std.npy', [np.mean(f0s).item(), np.std(f0s).item()])
print(f"| {prefix} total duration: {total_sec:.3f}s")
def process_item(self, item_name, meta_data, binarization_args):
from preprocessing.process_pipeline import File2Batch
return File2Batch.temporary_dict2processed_input(item_name, meta_data, self.phone_encoder, binarization_args)
def get_align(self, meta_data, mel, phone_encoded, res):
raise NotImplementedError
def get_align_from_textgrid(self, meta_data, mel, phone_encoded, res):
'''
NOTE: this part of script is *isolated* from other scripts, which means
it may not be compatible with the current version.
'''
return
tg_fn, ph = meta_data['tg_fn'], meta_data['ph']
if tg_fn is not None and os.path.exists(tg_fn):
mel2ph, dur = get_mel2ph(tg_fn, ph, mel, hparams)
else:
raise BinarizationError(f"Align not found")
if mel2ph.max() - 1 >= len(phone_encoded):
raise BinarizationError(
f"Align does not match: mel2ph.max() - 1: {mel2ph.max() - 1}, len(phone_encoded): {len(phone_encoded)}")
res['mel2ph'] = mel2ph
res['dur'] = dur
def get_f0cwt(self, f0, res):
'''
NOTE: this part of script is *isolated* from other scripts, which means
it may not be compatible with the current version.
'''
return
from utils.cwt import get_cont_lf0, get_lf0_cwt
uv, cont_lf0_lpf = get_cont_lf0(f0)
logf0s_mean_org, logf0s_std_org = np.mean(cont_lf0_lpf), np.std(cont_lf0_lpf)
cont_lf0_lpf_norm = (cont_lf0_lpf - logf0s_mean_org) / logf0s_std_org
Wavelet_lf0, scales = get_lf0_cwt(cont_lf0_lpf_norm)
if np.any(np.isnan(Wavelet_lf0)):
raise BinarizationError("NaN CWT")
res['cwt_spec'] = Wavelet_lf0
res['cwt_scales'] = scales
res['f0_mean'] = logf0s_mean_org
res['f0_std'] = logf0s_std_org
if __name__ == "__main__":
set_hparams()
BaseBinarizer().process()
|