Spaces:
Configuration error
Configuration error
File size: 26,506 Bytes
ed1cdd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 |
import math
import torch
from torch import nn
from torch.nn import Parameter
import torch.onnx.operators
import torch.nn.functional as F
import utils
class Reshape(nn.Module):
def __init__(self, *args):
super(Reshape, self).__init__()
self.shape = args
def forward(self, x):
return x.view(self.shape)
class Permute(nn.Module):
def __init__(self, *args):
super(Permute, self).__init__()
self.args = args
def forward(self, x):
return x.permute(self.args)
class LinearNorm(torch.nn.Module):
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
super(LinearNorm, self).__init__()
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
torch.nn.init.xavier_uniform_(
self.linear_layer.weight,
gain=torch.nn.init.calculate_gain(w_init_gain))
def forward(self, x):
return self.linear_layer(x)
class ConvNorm(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
padding=None, dilation=1, bias=True, w_init_gain='linear'):
super(ConvNorm, self).__init__()
if padding is None:
assert (kernel_size % 2 == 1)
padding = int(dilation * (kernel_size - 1) / 2)
self.conv = torch.nn.Conv1d(in_channels, out_channels,
kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation,
bias=bias)
torch.nn.init.xavier_uniform_(
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain))
def forward(self, signal):
conv_signal = self.conv(signal)
return conv_signal
def Embedding(num_embeddings, embedding_dim, padding_idx=None):
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5)
if padding_idx is not None:
nn.init.constant_(m.weight[padding_idx], 0)
return m
def LayerNorm(normalized_shape, eps=1e-5, elementwise_affine=True, export=False):
if not export and torch.cuda.is_available():
try:
from apex.normalization import FusedLayerNorm
return FusedLayerNorm(normalized_shape, eps, elementwise_affine)
except ImportError:
pass
return torch.nn.LayerNorm(normalized_shape, eps, elementwise_affine)
def Linear(in_features, out_features, bias=True):
m = nn.Linear(in_features, out_features, bias)
nn.init.xavier_uniform_(m.weight)
if bias:
nn.init.constant_(m.bias, 0.)
return m
class SinusoidalPositionalEmbedding(nn.Module):
"""This module produces sinusoidal positional embeddings of any length.
Padding symbols are ignored.
"""
def __init__(self, embedding_dim, padding_idx, init_size=1024):
super().__init__()
self.embedding_dim = embedding_dim
self.padding_idx = padding_idx
self.weights = SinusoidalPositionalEmbedding.get_embedding(
init_size,
embedding_dim,
padding_idx,
)
self.register_buffer('_float_tensor', torch.FloatTensor(1))
@staticmethod
def get_embedding(num_embeddings, embedding_dim, padding_idx=None):
"""Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly
from the description in Section 3.5 of "Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
if embedding_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
if padding_idx is not None:
emb[padding_idx, :] = 0
return emb
def forward(self, input, incremental_state=None, timestep=None, positions=None, **kwargs):
"""Input is expected to be of size [bsz x seqlen]."""
bsz, seq_len = input.shape[:2]
max_pos = self.padding_idx + 1 + seq_len
if self.weights is None or max_pos > self.weights.size(0):
# recompute/expand embeddings if needed
self.weights = SinusoidalPositionalEmbedding.get_embedding(
max_pos,
self.embedding_dim,
self.padding_idx,
)
self.weights = self.weights.to(self._float_tensor)
if incremental_state is not None:
# positions is the same for every token when decoding a single step
pos = timestep.view(-1)[0] + 1 if timestep is not None else seq_len
return self.weights[self.padding_idx + pos, :].expand(bsz, 1, -1)
positions = utils.make_positions(input, self.padding_idx) if positions is None else positions
return self.weights.index_select(0, positions.view(-1)).view(bsz, seq_len, -1).detach()
def max_positions(self):
"""Maximum number of supported positions."""
return int(1e5) # an arbitrary large number
class ConvTBC(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, padding=0):
super(ConvTBC, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.padding = padding
self.weight = torch.nn.Parameter(torch.Tensor(
self.kernel_size, in_channels, out_channels))
self.bias = torch.nn.Parameter(torch.Tensor(out_channels))
def forward(self, input):
return torch.conv_tbc(input.contiguous(), self.weight, self.bias, self.padding)
class MultiheadAttention(nn.Module):
def __init__(self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0., bias=True,
add_bias_kv=False, add_zero_attn=False, self_attention=False,
encoder_decoder_attention=False):
super().__init__()
self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
self.scaling = self.head_dim ** -0.5
self.self_attention = self_attention
self.encoder_decoder_attention = encoder_decoder_attention
assert not self.self_attention or self.qkv_same_dim, 'Self-attention requires query, key and ' \
'value to be of the same size'
if self.qkv_same_dim:
self.in_proj_weight = Parameter(torch.Tensor(3 * embed_dim, embed_dim))
else:
self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim))
self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim))
self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim))
if bias:
self.in_proj_bias = Parameter(torch.Tensor(3 * embed_dim))
else:
self.register_parameter('in_proj_bias', None)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
if add_bias_kv:
self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim))
self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim))
else:
self.bias_k = self.bias_v = None
self.add_zero_attn = add_zero_attn
self.reset_parameters()
self.enable_torch_version = False
if hasattr(F, "multi_head_attention_forward"):
self.enable_torch_version = True
else:
self.enable_torch_version = False
self.last_attn_probs = None
def reset_parameters(self):
if self.qkv_same_dim:
nn.init.xavier_uniform_(self.in_proj_weight)
else:
nn.init.xavier_uniform_(self.k_proj_weight)
nn.init.xavier_uniform_(self.v_proj_weight)
nn.init.xavier_uniform_(self.q_proj_weight)
nn.init.xavier_uniform_(self.out_proj.weight)
if self.in_proj_bias is not None:
nn.init.constant_(self.in_proj_bias, 0.)
nn.init.constant_(self.out_proj.bias, 0.)
if self.bias_k is not None:
nn.init.xavier_normal_(self.bias_k)
if self.bias_v is not None:
nn.init.xavier_normal_(self.bias_v)
def forward(
self,
query, key, value,
key_padding_mask=None,
incremental_state=None,
need_weights=True,
static_kv=False,
attn_mask=None,
before_softmax=False,
need_head_weights=False,
enc_dec_attn_constraint_mask=None,
reset_attn_weight=None
):
"""Input shape: Time x Batch x Channel
Args:
key_padding_mask (ByteTensor, optional): mask to exclude
keys that are pads, of shape `(batch, src_len)`, where
padding elements are indicated by 1s.
need_weights (bool, optional): return the attention weights,
averaged over heads (default: False).
attn_mask (ByteTensor, optional): typically used to
implement causal attention, where the mask prevents the
attention from looking forward in time (default: None).
before_softmax (bool, optional): return the raw attention
weights and values before the attention softmax.
need_head_weights (bool, optional): return the attention
weights for each head. Implies *need_weights*. Default:
return the average attention weights over all heads.
"""
if need_head_weights:
need_weights = True
tgt_len, bsz, embed_dim = query.size()
assert embed_dim == self.embed_dim
assert list(query.size()) == [tgt_len, bsz, embed_dim]
if self.enable_torch_version and incremental_state is None and not static_kv and reset_attn_weight is None:
if self.qkv_same_dim:
return F.multi_head_attention_forward(query, key, value,
self.embed_dim, self.num_heads,
self.in_proj_weight,
self.in_proj_bias, self.bias_k, self.bias_v,
self.add_zero_attn, self.dropout,
self.out_proj.weight, self.out_proj.bias,
self.training, key_padding_mask, need_weights,
attn_mask)
else:
return F.multi_head_attention_forward(query, key, value,
self.embed_dim, self.num_heads,
torch.empty([0]),
self.in_proj_bias, self.bias_k, self.bias_v,
self.add_zero_attn, self.dropout,
self.out_proj.weight, self.out_proj.bias,
self.training, key_padding_mask, need_weights,
attn_mask, use_separate_proj_weight=True,
q_proj_weight=self.q_proj_weight,
k_proj_weight=self.k_proj_weight,
v_proj_weight=self.v_proj_weight)
if incremental_state is not None:
print('Not implemented error.')
exit()
else:
saved_state = None
if self.self_attention:
# self-attention
q, k, v = self.in_proj_qkv(query)
elif self.encoder_decoder_attention:
# encoder-decoder attention
q = self.in_proj_q(query)
if key is None:
assert value is None
k = v = None
else:
k = self.in_proj_k(key)
v = self.in_proj_v(key)
else:
q = self.in_proj_q(query)
k = self.in_proj_k(key)
v = self.in_proj_v(value)
q *= self.scaling
if self.bias_k is not None:
assert self.bias_v is not None
k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
if attn_mask is not None:
attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1)
if key_padding_mask is not None:
key_padding_mask = torch.cat(
[key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1)], dim=1)
q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1)
if k is not None:
k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
if v is not None:
v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
if saved_state is not None:
print('Not implemented error.')
exit()
src_len = k.size(1)
# This is part of a workaround to get around fork/join parallelism
# not supporting Optional types.
if key_padding_mask is not None and key_padding_mask.shape == torch.Size([]):
key_padding_mask = None
if key_padding_mask is not None:
assert key_padding_mask.size(0) == bsz
assert key_padding_mask.size(1) == src_len
if self.add_zero_attn:
src_len += 1
k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1)
v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1)
if attn_mask is not None:
attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1)
if key_padding_mask is not None:
key_padding_mask = torch.cat(
[key_padding_mask, torch.zeros(key_padding_mask.size(0), 1).type_as(key_padding_mask)], dim=1)
attn_weights = torch.bmm(q, k.transpose(1, 2))
attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz)
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]
if attn_mask is not None:
if len(attn_mask.shape) == 2:
attn_mask = attn_mask.unsqueeze(0)
elif len(attn_mask.shape) == 3:
attn_mask = attn_mask[:, None].repeat([1, self.num_heads, 1, 1]).reshape(
bsz * self.num_heads, tgt_len, src_len)
attn_weights = attn_weights + attn_mask
if enc_dec_attn_constraint_mask is not None: # bs x head x L_kv
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.masked_fill(
enc_dec_attn_constraint_mask.unsqueeze(2).bool(),
-1e9,
)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if key_padding_mask is not None:
# don't attend to padding symbols
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.masked_fill(
key_padding_mask.unsqueeze(1).unsqueeze(2),
-1e9,
)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_logits = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
if before_softmax:
return attn_weights, v
attn_weights_float = utils.softmax(attn_weights, dim=-1)
attn_weights = attn_weights_float.type_as(attn_weights)
attn_probs = F.dropout(attn_weights_float.type_as(attn_weights), p=self.dropout, training=self.training)
if reset_attn_weight is not None:
if reset_attn_weight:
self.last_attn_probs = attn_probs.detach()
else:
assert self.last_attn_probs is not None
attn_probs = self.last_attn_probs
attn = torch.bmm(attn_probs, v)
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn = self.out_proj(attn)
if need_weights:
attn_weights = attn_weights_float.view(bsz, self.num_heads, tgt_len, src_len).transpose(1, 0)
if not need_head_weights:
# average attention weights over heads
attn_weights = attn_weights.mean(dim=0)
else:
attn_weights = None
return attn, (attn_weights, attn_logits)
def in_proj_qkv(self, query):
return self._in_proj(query).chunk(3, dim=-1)
def in_proj_q(self, query):
if self.qkv_same_dim:
return self._in_proj(query, end=self.embed_dim)
else:
bias = self.in_proj_bias
if bias is not None:
bias = bias[:self.embed_dim]
return F.linear(query, self.q_proj_weight, bias)
def in_proj_k(self, key):
if self.qkv_same_dim:
return self._in_proj(key, start=self.embed_dim, end=2 * self.embed_dim)
else:
weight = self.k_proj_weight
bias = self.in_proj_bias
if bias is not None:
bias = bias[self.embed_dim:2 * self.embed_dim]
return F.linear(key, weight, bias)
def in_proj_v(self, value):
if self.qkv_same_dim:
return self._in_proj(value, start=2 * self.embed_dim)
else:
weight = self.v_proj_weight
bias = self.in_proj_bias
if bias is not None:
bias = bias[2 * self.embed_dim:]
return F.linear(value, weight, bias)
def _in_proj(self, input, start=0, end=None):
weight = self.in_proj_weight
bias = self.in_proj_bias
weight = weight[start:end, :]
if bias is not None:
bias = bias[start:end]
return F.linear(input, weight, bias)
def apply_sparse_mask(self, attn_weights, tgt_len, src_len, bsz):
return attn_weights
class Swish(torch.autograd.Function):
@staticmethod
def forward(ctx, i):
result = i * torch.sigmoid(i)
ctx.save_for_backward(i)
return result
@staticmethod
def backward(ctx, grad_output):
i = ctx.saved_variables[0]
sigmoid_i = torch.sigmoid(i)
return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i)))
class CustomSwish(nn.Module):
def forward(self, input_tensor):
return Swish.apply(input_tensor)
class Mish(nn.Module):
def forward(self, x):
return x * torch.tanh(F.softplus(x))
class TransformerFFNLayer(nn.Module):
def __init__(self, hidden_size, filter_size, padding="SAME", kernel_size=1, dropout=0., act='gelu'):
super().__init__()
self.kernel_size = kernel_size
self.dropout = dropout
self.act = act
if padding == 'SAME':
self.ffn_1 = nn.Conv1d(hidden_size, filter_size, kernel_size, padding=kernel_size // 2)
elif padding == 'LEFT':
self.ffn_1 = nn.Sequential(
nn.ConstantPad1d((kernel_size - 1, 0), 0.0),
nn.Conv1d(hidden_size, filter_size, kernel_size)
)
self.ffn_2 = Linear(filter_size, hidden_size)
if self.act == 'swish':
self.swish_fn = CustomSwish()
def forward(self, x, incremental_state=None):
# x: T x B x C
if incremental_state is not None:
assert incremental_state is None, 'Nar-generation does not allow this.'
exit(1)
x = self.ffn_1(x.permute(1, 2, 0)).permute(2, 0, 1)
x = x * self.kernel_size ** -0.5
if incremental_state is not None:
x = x[-1:]
if self.act == 'gelu':
x = F.gelu(x)
if self.act == 'relu':
x = F.relu(x)
if self.act == 'swish':
x = self.swish_fn(x)
x = F.dropout(x, self.dropout, training=self.training)
x = self.ffn_2(x)
return x
class BatchNorm1dTBC(nn.Module):
def __init__(self, c):
super(BatchNorm1dTBC, self).__init__()
self.bn = nn.BatchNorm1d(c)
def forward(self, x):
"""
:param x: [T, B, C]
:return: [T, B, C]
"""
x = x.permute(1, 2, 0) # [B, C, T]
x = self.bn(x) # [B, C, T]
x = x.permute(2, 0, 1) # [T, B, C]
return x
class EncSALayer(nn.Module):
def __init__(self, c, num_heads, dropout, attention_dropout=0.1,
relu_dropout=0.1, kernel_size=9, padding='SAME', norm='ln', act='gelu'):
super().__init__()
self.c = c
self.dropout = dropout
self.num_heads = num_heads
if num_heads > 0:
if norm == 'ln':
self.layer_norm1 = LayerNorm(c)
elif norm == 'bn':
self.layer_norm1 = BatchNorm1dTBC(c)
self.self_attn = MultiheadAttention(
self.c, num_heads, self_attention=True, dropout=attention_dropout, bias=False,
)
if norm == 'ln':
self.layer_norm2 = LayerNorm(c)
elif norm == 'bn':
self.layer_norm2 = BatchNorm1dTBC(c)
self.ffn = TransformerFFNLayer(
c, 4 * c, kernel_size=kernel_size, dropout=relu_dropout, padding=padding, act=act)
def forward(self, x, encoder_padding_mask=None, **kwargs):
layer_norm_training = kwargs.get('layer_norm_training', None)
if layer_norm_training is not None:
self.layer_norm1.training = layer_norm_training
self.layer_norm2.training = layer_norm_training
if self.num_heads > 0:
residual = x
x = self.layer_norm1(x)
x, _, = self.self_attn(
query=x,
key=x,
value=x,
key_padding_mask=encoder_padding_mask
)
x = F.dropout(x, self.dropout, training=self.training)
x = residual + x
x = x * (1 - encoder_padding_mask.float()).transpose(0, 1)[..., None]
residual = x
x = self.layer_norm2(x)
x = self.ffn(x)
x = F.dropout(x, self.dropout, training=self.training)
x = residual + x
x = x * (1 - encoder_padding_mask.float()).transpose(0, 1)[..., None]
return x
class DecSALayer(nn.Module):
def __init__(self, c, num_heads, dropout, attention_dropout=0.1, relu_dropout=0.1, kernel_size=9, act='gelu'):
super().__init__()
self.c = c
self.dropout = dropout
self.layer_norm1 = LayerNorm(c)
self.self_attn = MultiheadAttention(
c, num_heads, self_attention=True, dropout=attention_dropout, bias=False
)
self.layer_norm2 = LayerNorm(c)
self.encoder_attn = MultiheadAttention(
c, num_heads, encoder_decoder_attention=True, dropout=attention_dropout, bias=False,
)
self.layer_norm3 = LayerNorm(c)
self.ffn = TransformerFFNLayer(
c, 4 * c, padding='LEFT', kernel_size=kernel_size, dropout=relu_dropout, act=act)
def forward(
self,
x,
encoder_out=None,
encoder_padding_mask=None,
incremental_state=None,
self_attn_mask=None,
self_attn_padding_mask=None,
attn_out=None,
reset_attn_weight=None,
**kwargs,
):
layer_norm_training = kwargs.get('layer_norm_training', None)
if layer_norm_training is not None:
self.layer_norm1.training = layer_norm_training
self.layer_norm2.training = layer_norm_training
self.layer_norm3.training = layer_norm_training
residual = x
x = self.layer_norm1(x)
x, _ = self.self_attn(
query=x,
key=x,
value=x,
key_padding_mask=self_attn_padding_mask,
incremental_state=incremental_state,
attn_mask=self_attn_mask
)
x = F.dropout(x, self.dropout, training=self.training)
x = residual + x
residual = x
x = self.layer_norm2(x)
if encoder_out is not None:
x, attn = self.encoder_attn(
query=x,
key=encoder_out,
value=encoder_out,
key_padding_mask=encoder_padding_mask,
incremental_state=incremental_state,
static_kv=True,
enc_dec_attn_constraint_mask=None, #utils.get_incremental_state(self, incremental_state, 'enc_dec_attn_constraint_mask'),
reset_attn_weight=reset_attn_weight
)
attn_logits = attn[1]
else:
assert attn_out is not None
x = self.encoder_attn.in_proj_v(attn_out.transpose(0, 1))
attn_logits = None
x = F.dropout(x, self.dropout, training=self.training)
x = residual + x
residual = x
x = self.layer_norm3(x)
x = self.ffn(x, incremental_state=incremental_state)
x = F.dropout(x, self.dropout, training=self.training)
x = residual + x
# if len(attn_logits.size()) > 3:
# indices = attn_logits.softmax(-1).max(-1).values.sum(-1).argmax(-1)
# attn_logits = attn_logits.gather(1,
# indices[:, None, None, None].repeat(1, 1, attn_logits.size(-2), attn_logits.size(-1))).squeeze(1)
return x, attn_logits
|