File size: 4,793 Bytes
ed1cdd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
from multiprocessing.pool import Pool

import matplotlib

from utils.pl_utils import data_loader
from utils.training_utils import RSQRTSchedule
from network.vocoders.base_vocoder import get_vocoder_cls, BaseVocoder
from modules.fastspeech.pe import PitchExtractor

matplotlib.use('Agg')
import os
import numpy as np
from tqdm import tqdm
import torch.distributed as dist

from training.task.base_task import BaseTask
from utils.hparams import hparams
from utils.text_encoder import TokenTextEncoder
import json
from preprocessing.hubertinfer import Hubertencoder
import torch
import torch.optim
import torch.utils.data
import utils



class TtsTask(BaseTask):
    def __init__(self, *args, **kwargs):
        self.vocoder = None
        self.phone_encoder = Hubertencoder(hparams['hubert_path'])
        # self.padding_idx = self.phone_encoder.pad()
        # self.eos_idx = self.phone_encoder.eos()
        # self.seg_idx = self.phone_encoder.seg()
        self.saving_result_pool = None
        self.saving_results_futures = None
        self.stats = {}
        super().__init__(*args, **kwargs)

    def build_scheduler(self, optimizer):
        return RSQRTSchedule(optimizer)

    def build_optimizer(self, model):
        self.optimizer = optimizer = torch.optim.AdamW(
            model.parameters(),
            lr=hparams['lr'])
        return optimizer

    def build_dataloader(self, dataset, shuffle, max_tokens=None, max_sentences=None,
                         required_batch_size_multiple=-1, endless=False, batch_by_size=True):
        devices_cnt = torch.cuda.device_count()
        if devices_cnt == 0:
            devices_cnt = 1
        if required_batch_size_multiple == -1:
            required_batch_size_multiple = devices_cnt

        def shuffle_batches(batches):
            np.random.shuffle(batches)
            return batches

        if max_tokens is not None:
            max_tokens *= devices_cnt
        if max_sentences is not None:
            max_sentences *= devices_cnt
        indices = dataset.ordered_indices()
        if batch_by_size:
            batch_sampler = utils.batch_by_size(
                indices, dataset.num_tokens, max_tokens=max_tokens, max_sentences=max_sentences,
                required_batch_size_multiple=required_batch_size_multiple,
            )
        else:
            batch_sampler = []
            for i in range(0, len(indices), max_sentences):
                batch_sampler.append(indices[i:i + max_sentences])

        if shuffle:
            batches = shuffle_batches(list(batch_sampler))
            if endless:
                batches = [b for _ in range(1000) for b in shuffle_batches(list(batch_sampler))]
        else:
            batches = batch_sampler
            if endless:
                batches = [b for _ in range(1000) for b in batches]
        num_workers = dataset.num_workers
        if self.trainer.use_ddp:
            num_replicas = dist.get_world_size()
            rank = dist.get_rank()
            batches = [x[rank::num_replicas] for x in batches if len(x) % num_replicas == 0]
        return torch.utils.data.DataLoader(dataset,
                                           collate_fn=dataset.collater,
                                           batch_sampler=batches,
                                           num_workers=num_workers,
                                           pin_memory=False)

    # def build_phone_encoder(self, data_dir):
    #     phone_list_file = os.path.join(data_dir, 'phone_set.json')

    #     phone_list = json.load(open(phone_list_file, encoding='utf-8'))
    #     return TokenTextEncoder(None, vocab_list=phone_list, replace_oov=',')

    def build_optimizer(self, model):
        self.optimizer = optimizer = torch.optim.AdamW(
            model.parameters(),
            lr=hparams['lr'])
        return optimizer

    def test_start(self):
        self.saving_result_pool = Pool(8)
        self.saving_results_futures = []
        self.vocoder: BaseVocoder = get_vocoder_cls(hparams)()
        if hparams.get('pe_enable') is not None and hparams['pe_enable']:
            self.pe = PitchExtractor().cuda()
            utils.load_ckpt(self.pe, hparams['pe_ckpt'], 'model', strict=True)
            self.pe.eval()
    def test_end(self, outputs):
        self.saving_result_pool.close()
        [f.get() for f in tqdm(self.saving_results_futures)]
        self.saving_result_pool.join()
        return {}

    ##########
    # utils
    ##########
    def weights_nonzero_speech(self, target):
        # target : B x T x mel
        # Assign weight 1.0 to all labels except for padding (id=0).
        dim = target.size(-1)
        return target.abs().sum(-1, keepdim=True).ne(0).float().repeat(1, 1, dim)

if __name__ == '__main__':
    TtsTask.start()