File size: 9,395 Bytes
ed1cdd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
'''
    file -> temporary_dict -> processed_input -> batch
'''
from utils.hparams import hparams
from network.vocoders.base_vocoder import VOCODERS
import numpy as np
import traceback
from pathlib import Path
from .data_gen_utils import get_pitch_parselmouth,get_pitch_crepe
from .base_binarizer import BinarizationError
import torch
import utils

class File2Batch:
    '''
        pipeline: file -> temporary_dict -> processed_input -> batch
    '''

    @staticmethod
    def file2temporary_dict():
        '''
            read from file, store data in temporary dicts
        '''
        raw_data_dir = Path(hparams['raw_data_dir'])
        # meta_midi = json.load(open(os.path.join(raw_data_dir, 'meta.json')))   # [list of dict]
        
        # if hparams['perform_enhance'] and not hparams['infer']:
        #     vocoder=get_vocoder_cls(hparams)()
        #     raw_files = list(raw_data_dir.rglob(f"*.wav"))
        #     dic=[]
        #     time_step = hparams['hop_size'] / hparams['audio_sample_rate']
        #     f0_min = hparams['f0_min']
        #     f0_max = hparams['f0_max']
        #     for file in raw_files:
        #         y, sr = librosa.load(file, sr=hparams['audio_sample_rate'])
        #         f0 = parselmouth.Sound(y, hparams['audio_sample_rate']).to_pitch_ac(
        #         time_step=time_step , voicing_threshold=0.6,
        #         pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
        #         f0_mean=np.mean(f0[f0>0])
        #         dic.append(f0_mean)
        #     for idx in np.where(dic>np.percentile(dic, 80))[0]:
        #         file=raw_files[idx]
        #         wav,mel=vocoder.wav2spec(str(file))
        #         f0,_=get_pitch_parselmouth(wav,mel,hparams)
        #         f0[f0>0]=f0[f0>0]*(2**(2/12))
        #         wav_pred=vocoder.spec2wav(torch.FloatTensor(mel),f0=torch.FloatTensor(f0))
        #         sf.write(file.with_name(file.name[:-4]+'_high.wav'), wav_pred, 24000, 'PCM_16')
        utterance_labels =[]
        utterance_labels.extend(list(raw_data_dir.rglob(f"*.wav")))
        utterance_labels.extend(list(raw_data_dir.rglob(f"*.ogg")))
        #open(os.path.join(raw_data_dir, 'transcriptions.txt'), encoding='utf-8').readlines()

        all_temp_dict = {}
        for utterance_label in utterance_labels:
            #song_info = utterance_label.split('|')
            item_name =str(utterance_label)#raw_item_name = song_info[0]
            # print(item_name)
            temp_dict = {}
            temp_dict['wav_fn'] =str(utterance_label)#f'{raw_data_dir}/wavs/{item_name}.wav'
            # temp_dict['txt'] = song_info[1]

            # temp_dict['ph'] = song_info[2]
            # # self.item2wdb[item_name] = list(np.nonzero([1 if x in ALL_YUNMU + ['AP', 'SP'] else 0 for x in song_info[2].split()])[0])
            # temp_dict['word_boundary'] = np.array([1 if x in ALL_YUNMU + ['AP', 'SP'] else 0 for x in song_info[2].split()])
            # temp_dict['ph_durs'] = [float(x) for x in song_info[5].split(" ")]

            # temp_dict['pitch_midi'] = np.array([note_to_midi(x.split("/")[0]) if x != 'rest' else 0
            #                        for x in song_info[3].split(" ")])
            # temp_dict['midi_dur'] = np.array([float(x) for x in song_info[4].split(" ")])
            # temp_dict['is_slur'] = np.array([int(x) for x in song_info[6].split(" ")])
            temp_dict['spk_id'] = hparams['speaker_id']
            # assert temp_dict['pitch_midi'].shape == temp_dict['midi_dur'].shape == temp_dict['is_slur'].shape, \
                # (temp_dict['pitch_midi'].shape, temp_dict['midi_dur'].shape, temp_dict['is_slur'].shape)

            all_temp_dict[item_name] = temp_dict

        return all_temp_dict
    
    @staticmethod
    def temporary_dict2processed_input(item_name, temp_dict, encoder, binarization_args):
        '''
            process data in temporary_dicts
        '''
        def get_pitch(wav, mel):
            # get ground truth f0 by self.get_pitch_algorithm
            if hparams['use_crepe']:
                gt_f0, gt_pitch_coarse = get_pitch_crepe(wav, mel, hparams)
            else:
                gt_f0, gt_pitch_coarse = get_pitch_parselmouth(wav, mel, hparams)
            if sum(gt_f0) == 0:
                raise BinarizationError("Empty **gt** f0")
            processed_input['f0'] = gt_f0
            processed_input['pitch'] = gt_pitch_coarse
    
        def get_align(meta_data, mel, phone_encoded, hop_size=hparams['hop_size'], audio_sample_rate=hparams['audio_sample_rate']):
            mel2ph = np.zeros([mel.shape[0]], int)
            start_frame=0
            ph_durs = mel.shape[0]/phone_encoded.shape[0]
            if hparams['debug']:
                print(mel.shape,phone_encoded.shape,mel.shape[0]/phone_encoded.shape[0])
            for i_ph in range(phone_encoded.shape[0]):
                
                end_frame = int(i_ph*ph_durs +ph_durs+ 0.5)
                mel2ph[start_frame:end_frame+1] = i_ph + 1
                start_frame = end_frame+1

            processed_input['mel2ph'] = mel2ph

        if hparams['vocoder'] in VOCODERS:
            wav, mel = VOCODERS[hparams['vocoder']].wav2spec(temp_dict['wav_fn'])
        else:
            wav, mel = VOCODERS[hparams['vocoder'].split('.')[-1]].wav2spec(temp_dict['wav_fn'])
        processed_input = {
            'item_name': item_name, 'mel': mel, 'wav': wav,
            'sec': len(wav) / hparams['audio_sample_rate'], 'len': mel.shape[0]
        }
        processed_input = {**temp_dict, **processed_input} # merge two dicts
        processed_input['spec_min']=np.min(mel,axis=0)
        processed_input['spec_max']=np.max(mel,axis=0)
        #(processed_input['spec_min'].shape)
        try:
            if binarization_args['with_f0']:
                get_pitch(wav, mel)
            if binarization_args['with_hubert']:
                try:
                    hubert_encoded = processed_input['hubert'] = encoder.encode(temp_dict['wav_fn'])
                except:
                    traceback.print_exc()
                    raise Exception(f"hubert encode error")
                if binarization_args['with_align']:
                    get_align(temp_dict, mel, hubert_encoded)
        except Exception as e:
            print(f"| Skip item ({e}). item_name: {item_name}, wav_fn: {temp_dict['wav_fn']}")
            return None
        return processed_input

    @staticmethod
    def processed_input2batch(samples):
        '''
            Args:
                samples: one batch of processed_input
            NOTE:
                the batch size is controlled by hparams['max_sentences']
        '''
        if len(samples) == 0:
            return {}
        id = torch.LongTensor([s['id'] for s in samples])
        item_names = [s['item_name'] for s in samples]
        #text = [s['text'] for s in samples]
        #txt_tokens = utils.collate_1d([s['txt_token'] for s in samples], 0)
        hubert = utils.collate_2d([s['hubert'] for s in samples], 0.0)
        f0 = utils.collate_1d([s['f0'] for s in samples], 0.0)
        pitch = utils.collate_1d([s['pitch'] for s in samples])
        uv = utils.collate_1d([s['uv'] for s in samples])
        energy = utils.collate_1d([s['energy'] for s in samples], 0.0)
        mel2ph = utils.collate_1d([s['mel2ph'] for s in samples], 0.0) \
            if samples[0]['mel2ph'] is not None else None
        mels = utils.collate_2d([s['mel'] for s in samples], 0.0)
        #txt_lengths = torch.LongTensor([s['txt_token'].numel() for s in samples])
        hubert_lengths = torch.LongTensor([s['hubert'].shape[0] for s in samples])
        mel_lengths = torch.LongTensor([s['mel'].shape[0] for s in samples])

        batch = {
            'id': id,
            'item_name': item_names,
            'nsamples': len(samples),
            # 'text': text,
            # 'txt_tokens': txt_tokens,
            # 'txt_lengths': txt_lengths,
            'hubert':hubert,
            'mels': mels,
            'mel_lengths': mel_lengths,
            'mel2ph': mel2ph,
            'energy': energy,
            'pitch': pitch,
            'f0': f0,
            'uv': uv,
        }
        #========not used=================
        # if hparams['use_spk_embed']:
        #     spk_embed = torch.stack([s['spk_embed'] for s in samples])
        #     batch['spk_embed'] = spk_embed
        # if hparams['use_spk_id']:
        #     spk_ids = torch.LongTensor([s['spk_id'] for s in samples])
        #     batch['spk_ids'] = spk_ids
        # if hparams['pitch_type'] == 'cwt':
        #     cwt_spec = utils.collate_2d([s['cwt_spec'] for s in samples])
        #     f0_mean = torch.Tensor([s['f0_mean'] for s in samples])
        #     f0_std = torch.Tensor([s['f0_std'] for s in samples])
        #     batch.update({'cwt_spec': cwt_spec, 'f0_mean': f0_mean, 'f0_std': f0_std})
        # elif hparams['pitch_type'] == 'ph':
        #     batch['f0'] = utils.collate_1d([s['f0_ph'] for s in samples])

        # batch['pitch_midi'] = utils.collate_1d([s['pitch_midi'] for s in samples], 0)
        # batch['midi_dur'] = utils.collate_1d([s['midi_dur'] for s in samples], 0)
        # batch['is_slur'] = utils.collate_1d([s['is_slur'] for s in samples], 0)
        # batch['word_boundary'] = utils.collate_1d([s['word_boundary'] for s in samples], 0)

        return batch