Spaces:
Configuration error
Configuration error
File size: 9,395 Bytes
ed1cdd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
'''
file -> temporary_dict -> processed_input -> batch
'''
from utils.hparams import hparams
from network.vocoders.base_vocoder import VOCODERS
import numpy as np
import traceback
from pathlib import Path
from .data_gen_utils import get_pitch_parselmouth,get_pitch_crepe
from .base_binarizer import BinarizationError
import torch
import utils
class File2Batch:
'''
pipeline: file -> temporary_dict -> processed_input -> batch
'''
@staticmethod
def file2temporary_dict():
'''
read from file, store data in temporary dicts
'''
raw_data_dir = Path(hparams['raw_data_dir'])
# meta_midi = json.load(open(os.path.join(raw_data_dir, 'meta.json'))) # [list of dict]
# if hparams['perform_enhance'] and not hparams['infer']:
# vocoder=get_vocoder_cls(hparams)()
# raw_files = list(raw_data_dir.rglob(f"*.wav"))
# dic=[]
# time_step = hparams['hop_size'] / hparams['audio_sample_rate']
# f0_min = hparams['f0_min']
# f0_max = hparams['f0_max']
# for file in raw_files:
# y, sr = librosa.load(file, sr=hparams['audio_sample_rate'])
# f0 = parselmouth.Sound(y, hparams['audio_sample_rate']).to_pitch_ac(
# time_step=time_step , voicing_threshold=0.6,
# pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
# f0_mean=np.mean(f0[f0>0])
# dic.append(f0_mean)
# for idx in np.where(dic>np.percentile(dic, 80))[0]:
# file=raw_files[idx]
# wav,mel=vocoder.wav2spec(str(file))
# f0,_=get_pitch_parselmouth(wav,mel,hparams)
# f0[f0>0]=f0[f0>0]*(2**(2/12))
# wav_pred=vocoder.spec2wav(torch.FloatTensor(mel),f0=torch.FloatTensor(f0))
# sf.write(file.with_name(file.name[:-4]+'_high.wav'), wav_pred, 24000, 'PCM_16')
utterance_labels =[]
utterance_labels.extend(list(raw_data_dir.rglob(f"*.wav")))
utterance_labels.extend(list(raw_data_dir.rglob(f"*.ogg")))
#open(os.path.join(raw_data_dir, 'transcriptions.txt'), encoding='utf-8').readlines()
all_temp_dict = {}
for utterance_label in utterance_labels:
#song_info = utterance_label.split('|')
item_name =str(utterance_label)#raw_item_name = song_info[0]
# print(item_name)
temp_dict = {}
temp_dict['wav_fn'] =str(utterance_label)#f'{raw_data_dir}/wavs/{item_name}.wav'
# temp_dict['txt'] = song_info[1]
# temp_dict['ph'] = song_info[2]
# # self.item2wdb[item_name] = list(np.nonzero([1 if x in ALL_YUNMU + ['AP', 'SP'] else 0 for x in song_info[2].split()])[0])
# temp_dict['word_boundary'] = np.array([1 if x in ALL_YUNMU + ['AP', 'SP'] else 0 for x in song_info[2].split()])
# temp_dict['ph_durs'] = [float(x) for x in song_info[5].split(" ")]
# temp_dict['pitch_midi'] = np.array([note_to_midi(x.split("/")[0]) if x != 'rest' else 0
# for x in song_info[3].split(" ")])
# temp_dict['midi_dur'] = np.array([float(x) for x in song_info[4].split(" ")])
# temp_dict['is_slur'] = np.array([int(x) for x in song_info[6].split(" ")])
temp_dict['spk_id'] = hparams['speaker_id']
# assert temp_dict['pitch_midi'].shape == temp_dict['midi_dur'].shape == temp_dict['is_slur'].shape, \
# (temp_dict['pitch_midi'].shape, temp_dict['midi_dur'].shape, temp_dict['is_slur'].shape)
all_temp_dict[item_name] = temp_dict
return all_temp_dict
@staticmethod
def temporary_dict2processed_input(item_name, temp_dict, encoder, binarization_args):
'''
process data in temporary_dicts
'''
def get_pitch(wav, mel):
# get ground truth f0 by self.get_pitch_algorithm
if hparams['use_crepe']:
gt_f0, gt_pitch_coarse = get_pitch_crepe(wav, mel, hparams)
else:
gt_f0, gt_pitch_coarse = get_pitch_parselmouth(wav, mel, hparams)
if sum(gt_f0) == 0:
raise BinarizationError("Empty **gt** f0")
processed_input['f0'] = gt_f0
processed_input['pitch'] = gt_pitch_coarse
def get_align(meta_data, mel, phone_encoded, hop_size=hparams['hop_size'], audio_sample_rate=hparams['audio_sample_rate']):
mel2ph = np.zeros([mel.shape[0]], int)
start_frame=0
ph_durs = mel.shape[0]/phone_encoded.shape[0]
if hparams['debug']:
print(mel.shape,phone_encoded.shape,mel.shape[0]/phone_encoded.shape[0])
for i_ph in range(phone_encoded.shape[0]):
end_frame = int(i_ph*ph_durs +ph_durs+ 0.5)
mel2ph[start_frame:end_frame+1] = i_ph + 1
start_frame = end_frame+1
processed_input['mel2ph'] = mel2ph
if hparams['vocoder'] in VOCODERS:
wav, mel = VOCODERS[hparams['vocoder']].wav2spec(temp_dict['wav_fn'])
else:
wav, mel = VOCODERS[hparams['vocoder'].split('.')[-1]].wav2spec(temp_dict['wav_fn'])
processed_input = {
'item_name': item_name, 'mel': mel, 'wav': wav,
'sec': len(wav) / hparams['audio_sample_rate'], 'len': mel.shape[0]
}
processed_input = {**temp_dict, **processed_input} # merge two dicts
processed_input['spec_min']=np.min(mel,axis=0)
processed_input['spec_max']=np.max(mel,axis=0)
#(processed_input['spec_min'].shape)
try:
if binarization_args['with_f0']:
get_pitch(wav, mel)
if binarization_args['with_hubert']:
try:
hubert_encoded = processed_input['hubert'] = encoder.encode(temp_dict['wav_fn'])
except:
traceback.print_exc()
raise Exception(f"hubert encode error")
if binarization_args['with_align']:
get_align(temp_dict, mel, hubert_encoded)
except Exception as e:
print(f"| Skip item ({e}). item_name: {item_name}, wav_fn: {temp_dict['wav_fn']}")
return None
return processed_input
@staticmethod
def processed_input2batch(samples):
'''
Args:
samples: one batch of processed_input
NOTE:
the batch size is controlled by hparams['max_sentences']
'''
if len(samples) == 0:
return {}
id = torch.LongTensor([s['id'] for s in samples])
item_names = [s['item_name'] for s in samples]
#text = [s['text'] for s in samples]
#txt_tokens = utils.collate_1d([s['txt_token'] for s in samples], 0)
hubert = utils.collate_2d([s['hubert'] for s in samples], 0.0)
f0 = utils.collate_1d([s['f0'] for s in samples], 0.0)
pitch = utils.collate_1d([s['pitch'] for s in samples])
uv = utils.collate_1d([s['uv'] for s in samples])
energy = utils.collate_1d([s['energy'] for s in samples], 0.0)
mel2ph = utils.collate_1d([s['mel2ph'] for s in samples], 0.0) \
if samples[0]['mel2ph'] is not None else None
mels = utils.collate_2d([s['mel'] for s in samples], 0.0)
#txt_lengths = torch.LongTensor([s['txt_token'].numel() for s in samples])
hubert_lengths = torch.LongTensor([s['hubert'].shape[0] for s in samples])
mel_lengths = torch.LongTensor([s['mel'].shape[0] for s in samples])
batch = {
'id': id,
'item_name': item_names,
'nsamples': len(samples),
# 'text': text,
# 'txt_tokens': txt_tokens,
# 'txt_lengths': txt_lengths,
'hubert':hubert,
'mels': mels,
'mel_lengths': mel_lengths,
'mel2ph': mel2ph,
'energy': energy,
'pitch': pitch,
'f0': f0,
'uv': uv,
}
#========not used=================
# if hparams['use_spk_embed']:
# spk_embed = torch.stack([s['spk_embed'] for s in samples])
# batch['spk_embed'] = spk_embed
# if hparams['use_spk_id']:
# spk_ids = torch.LongTensor([s['spk_id'] for s in samples])
# batch['spk_ids'] = spk_ids
# if hparams['pitch_type'] == 'cwt':
# cwt_spec = utils.collate_2d([s['cwt_spec'] for s in samples])
# f0_mean = torch.Tensor([s['f0_mean'] for s in samples])
# f0_std = torch.Tensor([s['f0_std'] for s in samples])
# batch.update({'cwt_spec': cwt_spec, 'f0_mean': f0_mean, 'f0_std': f0_std})
# elif hparams['pitch_type'] == 'ph':
# batch['f0'] = utils.collate_1d([s['f0_ph'] for s in samples])
# batch['pitch_midi'] = utils.collate_1d([s['pitch_midi'] for s in samples], 0)
# batch['midi_dur'] = utils.collate_1d([s['midi_dur'] for s in samples], 0)
# batch['is_slur'] = utils.collate_1d([s['is_slur'] for s in samples], 0)
# batch['word_boundary'] = utils.collate_1d([s['word_boundary'] for s in samples], 0)
return batch |