File size: 4,768 Bytes
ed1cdd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# -*- coding: utf-8 -*-

# Copyright 2019 Tomoki Hayashi
#  MIT License (https://opensource.org/licenses/MIT)

"""Utility functions."""

import fnmatch
import logging
import os
import sys

import h5py
import numpy as np


def find_files(root_dir, query="*.wav", include_root_dir=True):
    """Find files recursively.

    Args:
        root_dir (str): Root root_dir to find.
        query (str): Query to find.
        include_root_dir (bool): If False, root_dir name is not included.

    Returns:
        list: List of found filenames.

    """
    files = []
    for root, dirnames, filenames in os.walk(root_dir, followlinks=True):
        for filename in fnmatch.filter(filenames, query):
            files.append(os.path.join(root, filename))
    if not include_root_dir:
        files = [file_.replace(root_dir + "/", "") for file_ in files]

    return files


def read_hdf5(hdf5_name, hdf5_path):
    """Read hdf5 dataset.

    Args:
        hdf5_name (str): Filename of hdf5 file.
        hdf5_path (str): Dataset name in hdf5 file.

    Return:
        any: Dataset values.

    """
    if not os.path.exists(hdf5_name):
        logging.error(f"There is no such a hdf5 file ({hdf5_name}).")
        sys.exit(1)

    hdf5_file = h5py.File(hdf5_name, "r")

    if hdf5_path not in hdf5_file:
        logging.error(f"There is no such a data in hdf5 file. ({hdf5_path})")
        sys.exit(1)

    hdf5_data = hdf5_file[hdf5_path][()]
    hdf5_file.close()

    return hdf5_data


def write_hdf5(hdf5_name, hdf5_path, write_data, is_overwrite=True):
    """Write dataset to hdf5.

    Args:
        hdf5_name (str): Hdf5 dataset filename.
        hdf5_path (str): Dataset path in hdf5.
        write_data (ndarray): Data to write.
        is_overwrite (bool): Whether to overwrite dataset.

    """
    # convert to numpy array
    write_data = np.array(write_data)

    # check folder existence
    folder_name, _ = os.path.split(hdf5_name)
    if not os.path.exists(folder_name) and len(folder_name) != 0:
        os.makedirs(folder_name)

    # check hdf5 existence
    if os.path.exists(hdf5_name):
        # if already exists, open with r+ mode
        hdf5_file = h5py.File(hdf5_name, "r+")
        # check dataset existence
        if hdf5_path in hdf5_file:
            if is_overwrite:
                logging.warning("Dataset in hdf5 file already exists. "
                                "recreate dataset in hdf5.")
                hdf5_file.__delitem__(hdf5_path)
            else:
                logging.error("Dataset in hdf5 file already exists. "
                              "if you want to overwrite, please set is_overwrite = True.")
                hdf5_file.close()
                sys.exit(1)
    else:
        # if not exists, open with w mode
        hdf5_file = h5py.File(hdf5_name, "w")

    # write data to hdf5
    hdf5_file.create_dataset(hdf5_path, data=write_data)
    hdf5_file.flush()
    hdf5_file.close()


class HDF5ScpLoader(object):
    """Loader class for a fests.scp file of hdf5 file.

    Examples:
        key1 /some/path/a.h5:feats
        key2 /some/path/b.h5:feats
        key3 /some/path/c.h5:feats
        key4 /some/path/d.h5:feats
        ...
        >>> loader = HDF5ScpLoader("hdf5.scp")
        >>> array = loader["key1"]

        key1 /some/path/a.h5
        key2 /some/path/b.h5
        key3 /some/path/c.h5
        key4 /some/path/d.h5
        ...
        >>> loader = HDF5ScpLoader("hdf5.scp", "feats")
        >>> array = loader["key1"]

    """

    def __init__(self, feats_scp, default_hdf5_path="feats"):
        """Initialize HDF5 scp loader.

        Args:
            feats_scp (str): Kaldi-style feats.scp file with hdf5 format.
            default_hdf5_path (str): Path in hdf5 file. If the scp contain the info, not used.

        """
        self.default_hdf5_path = default_hdf5_path
        with open(feats_scp, encoding='utf-8') as f:
            lines = [line.replace("\n", "") for line in f.readlines()]
        self.data = {}
        for line in lines:
            key, value = line.split()
            self.data[key] = value

    def get_path(self, key):
        """Get hdf5 file path for a given key."""
        return self.data[key]

    def __getitem__(self, key):
        """Get ndarray for a given key."""
        p = self.data[key]
        if ":" in p:
            return read_hdf5(*p.split(":"))
        else:
            return read_hdf5(p, self.default_hdf5_path)

    def __len__(self):
        """Return the length of the scp file."""
        return len(self.data)

    def __iter__(self):
        """Return the iterator of the scp file."""
        return iter(self.data)

    def keys(self):
        """Return the keys of the scp file."""
        return self.data.keys()