Spaces:
Configuration error
Configuration error
File size: 15,173 Bytes
ed1cdd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
import logging
import math
import torch
import torch.nn as nn
from torch.nn import functional as F
from modules.commons.espnet_positional_embedding import RelPositionalEncoding
from modules.commons.common_layers import SinusoidalPositionalEmbedding, Linear, EncSALayer, DecSALayer, BatchNorm1dTBC
from utils.hparams import hparams
DEFAULT_MAX_SOURCE_POSITIONS = 2000
DEFAULT_MAX_TARGET_POSITIONS = 2000
class TransformerEncoderLayer(nn.Module):
def __init__(self, hidden_size, dropout, kernel_size=None, num_heads=2, norm='ln'):
super().__init__()
self.hidden_size = hidden_size
self.dropout = dropout
self.num_heads = num_heads
self.op = EncSALayer(
hidden_size, num_heads, dropout=dropout,
attention_dropout=0.0, relu_dropout=dropout,
kernel_size=kernel_size
if kernel_size is not None else hparams['enc_ffn_kernel_size'],
padding=hparams['ffn_padding'],
norm=norm, act=hparams['ffn_act'])
def forward(self, x, **kwargs):
return self.op(x, **kwargs)
######################
# fastspeech modules
######################
class LayerNorm(torch.nn.LayerNorm):
"""Layer normalization module.
:param int nout: output dim size
:param int dim: dimension to be normalized
"""
def __init__(self, nout, dim=-1):
"""Construct an LayerNorm object."""
super(LayerNorm, self).__init__(nout, eps=1e-12)
self.dim = dim
def forward(self, x):
"""Apply layer normalization.
:param torch.Tensor x: input tensor
:return: layer normalized tensor
:rtype torch.Tensor
"""
if self.dim == -1:
return super(LayerNorm, self).forward(x)
return super(LayerNorm, self).forward(x.transpose(1, -1)).transpose(1, -1)
class DurationPredictor(torch.nn.Module):
"""Duration predictor module.
This is a module of duration predictor described in `FastSpeech: Fast, Robust and Controllable Text to Speech`_.
The duration predictor predicts a duration of each frame in log domain from the hidden embeddings of encoder.
.. _`FastSpeech: Fast, Robust and Controllable Text to Speech`:
https://arxiv.org/pdf/1905.09263.pdf
Note:
The calculation domain of outputs is different between in `forward` and in `inference`. In `forward`,
the outputs are calculated in log domain but in `inference`, those are calculated in linear domain.
"""
def __init__(self, idim, n_layers=2, n_chans=384, kernel_size=3, dropout_rate=0.1, offset=1.0, padding='SAME'):
"""Initilize duration predictor module.
Args:
idim (int): Input dimension.
n_layers (int, optional): Number of convolutional layers.
n_chans (int, optional): Number of channels of convolutional layers.
kernel_size (int, optional): Kernel size of convolutional layers.
dropout_rate (float, optional): Dropout rate.
offset (float, optional): Offset value to avoid nan in log domain.
"""
super(DurationPredictor, self).__init__()
self.offset = offset
self.conv = torch.nn.ModuleList()
self.kernel_size = kernel_size
self.padding = padding
for idx in range(n_layers):
in_chans = idim if idx == 0 else n_chans
self.conv += [torch.nn.Sequential(
torch.nn.ConstantPad1d(((kernel_size - 1) // 2, (kernel_size - 1) // 2)
if padding == 'SAME'
else (kernel_size - 1, 0), 0),
torch.nn.Conv1d(in_chans, n_chans, kernel_size, stride=1, padding=0),
torch.nn.ReLU(),
LayerNorm(n_chans, dim=1),
torch.nn.Dropout(dropout_rate)
)]
if hparams['dur_loss'] in ['mse', 'huber']:
odims = 1
elif hparams['dur_loss'] == 'mog':
odims = 15
elif hparams['dur_loss'] == 'crf':
odims = 32
from torchcrf import CRF
self.crf = CRF(odims, batch_first=True)
self.linear = torch.nn.Linear(n_chans, odims)
def _forward(self, xs, x_masks=None, is_inference=False):
xs = xs.transpose(1, -1) # (B, idim, Tmax)
for f in self.conv:
xs = f(xs) # (B, C, Tmax)
if x_masks is not None:
xs = xs * (1 - x_masks.float())[:, None, :]
xs = self.linear(xs.transpose(1, -1)) # [B, T, C]
xs = xs * (1 - x_masks.float())[:, :, None] # (B, T, C)
if is_inference:
return self.out2dur(xs), xs
else:
if hparams['dur_loss'] in ['mse']:
xs = xs.squeeze(-1) # (B, Tmax)
return xs
def out2dur(self, xs):
if hparams['dur_loss'] in ['mse']:
# NOTE: calculate in log domain
xs = xs.squeeze(-1) # (B, Tmax)
dur = torch.clamp(torch.round(xs.exp() - self.offset), min=0).long() # avoid negative value
elif hparams['dur_loss'] == 'mog':
return NotImplementedError
elif hparams['dur_loss'] == 'crf':
dur = torch.LongTensor(self.crf.decode(xs)).cuda()
return dur
def forward(self, xs, x_masks=None):
"""Calculate forward propagation.
Args:
xs (Tensor): Batch of input sequences (B, Tmax, idim).
x_masks (ByteTensor, optional): Batch of masks indicating padded part (B, Tmax).
Returns:
Tensor: Batch of predicted durations in log domain (B, Tmax).
"""
return self._forward(xs, x_masks, False)
def inference(self, xs, x_masks=None):
"""Inference duration.
Args:
xs (Tensor): Batch of input sequences (B, Tmax, idim).
x_masks (ByteTensor, optional): Batch of masks indicating padded part (B, Tmax).
Returns:
LongTensor: Batch of predicted durations in linear domain (B, Tmax).
"""
return self._forward(xs, x_masks, True)
class LengthRegulator(torch.nn.Module):
def __init__(self, pad_value=0.0):
super(LengthRegulator, self).__init__()
self.pad_value = pad_value
def forward(self, dur, dur_padding=None, alpha=1.0):
"""
Example (no batch dim version):
1. dur = [2,2,3]
2. token_idx = [[1],[2],[3]], dur_cumsum = [2,4,7], dur_cumsum_prev = [0,2,4]
3. token_mask = [[1,1,0,0,0,0,0],
[0,0,1,1,0,0,0],
[0,0,0,0,1,1,1]]
4. token_idx * token_mask = [[1,1,0,0,0,0,0],
[0,0,2,2,0,0,0],
[0,0,0,0,3,3,3]]
5. (token_idx * token_mask).sum(0) = [1,1,2,2,3,3,3]
:param dur: Batch of durations of each frame (B, T_txt)
:param dur_padding: Batch of padding of each frame (B, T_txt)
:param alpha: duration rescale coefficient
:return:
mel2ph (B, T_speech)
"""
assert alpha > 0
dur = torch.round(dur.float() * alpha).long()
if dur_padding is not None:
dur = dur * (1 - dur_padding.long())
token_idx = torch.arange(1, dur.shape[1] + 1)[None, :, None].to(dur.device)
dur_cumsum = torch.cumsum(dur, 1)
dur_cumsum_prev = F.pad(dur_cumsum, [1, -1], mode='constant', value=0)
pos_idx = torch.arange(dur.sum(-1).max())[None, None].to(dur.device)
token_mask = (pos_idx >= dur_cumsum_prev[:, :, None]) & (pos_idx < dur_cumsum[:, :, None])
mel2ph = (token_idx * token_mask.long()).sum(1)
return mel2ph
class PitchPredictor(torch.nn.Module):
def __init__(self, idim, n_layers=5, n_chans=384, odim=2, kernel_size=5,
dropout_rate=0.1, padding='SAME'):
"""Initilize pitch predictor module.
Args:
idim (int): Input dimension.
n_layers (int, optional): Number of convolutional layers.
n_chans (int, optional): Number of channels of convolutional layers.
kernel_size (int, optional): Kernel size of convolutional layers.
dropout_rate (float, optional): Dropout rate.
"""
super(PitchPredictor, self).__init__()
self.conv = torch.nn.ModuleList()
self.kernel_size = kernel_size
self.padding = padding
for idx in range(n_layers):
in_chans = idim if idx == 0 else n_chans
self.conv += [torch.nn.Sequential(
torch.nn.ConstantPad1d(((kernel_size - 1) // 2, (kernel_size - 1) // 2)
if padding == 'SAME'
else (kernel_size - 1, 0), 0),
torch.nn.Conv1d(in_chans, n_chans, kernel_size, stride=1, padding=0),
torch.nn.ReLU(),
LayerNorm(n_chans, dim=1),
torch.nn.Dropout(dropout_rate)
)]
self.linear = torch.nn.Linear(n_chans, odim)
self.embed_positions = SinusoidalPositionalEmbedding(idim, 0, init_size=4096)
self.pos_embed_alpha = nn.Parameter(torch.Tensor([1]))
def forward(self, xs):
"""
:param xs: [B, T, H]
:return: [B, T, H]
"""
positions = self.pos_embed_alpha * self.embed_positions(xs[..., 0])
xs = xs + positions
xs = xs.transpose(1, -1) # (B, idim, Tmax)
for f in self.conv:
xs = f(xs) # (B, C, Tmax)
# NOTE: calculate in log domain
xs = self.linear(xs.transpose(1, -1)) # (B, Tmax, H)
return xs
class EnergyPredictor(PitchPredictor):
pass
def mel2ph_to_dur(mel2ph, T_txt, max_dur=None):
B, _ = mel2ph.shape
dur = mel2ph.new_zeros(B, T_txt + 1).scatter_add(1, mel2ph, torch.ones_like(mel2ph))
dur = dur[:, 1:]
if max_dur is not None:
dur = dur.clamp(max=max_dur)
return dur
class FFTBlocks(nn.Module):
def __init__(self, hidden_size, num_layers, ffn_kernel_size=9, dropout=None, num_heads=2,
use_pos_embed=True, use_last_norm=True, norm='ln', use_pos_embed_alpha=True):
super().__init__()
self.num_layers = num_layers
embed_dim = self.hidden_size = hidden_size
self.dropout = dropout if dropout is not None else hparams['dropout']
self.use_pos_embed = use_pos_embed
self.use_last_norm = use_last_norm
if use_pos_embed:
self.max_source_positions = DEFAULT_MAX_TARGET_POSITIONS
self.padding_idx = 0
self.pos_embed_alpha = nn.Parameter(torch.Tensor([1])) if use_pos_embed_alpha else 1
self.embed_positions = SinusoidalPositionalEmbedding(
embed_dim, self.padding_idx, init_size=DEFAULT_MAX_TARGET_POSITIONS,
)
self.layers = nn.ModuleList([])
self.layers.extend([
TransformerEncoderLayer(self.hidden_size, self.dropout,
kernel_size=ffn_kernel_size, num_heads=num_heads)
for _ in range(self.num_layers)
])
if self.use_last_norm:
if norm == 'ln':
self.layer_norm = nn.LayerNorm(embed_dim)
elif norm == 'bn':
self.layer_norm = BatchNorm1dTBC(embed_dim)
else:
self.layer_norm = None
def forward(self, x, padding_mask=None, attn_mask=None, return_hiddens=False):
"""
:param x: [B, T, C]
:param padding_mask: [B, T]
:return: [B, T, C] or [L, B, T, C]
"""
# padding_mask = x.abs().sum(-1).eq(0).data if padding_mask is None else padding_mask
padding_mask = x.abs().sum(-1).eq(0).detach() if padding_mask is None else padding_mask
nonpadding_mask_TB = 1 - padding_mask.transpose(0, 1).float()[:, :, None] # [T, B, 1]
if self.use_pos_embed:
positions = self.pos_embed_alpha * self.embed_positions(x[..., 0])
x = x + positions
x = F.dropout(x, p=self.dropout, training=self.training)
# B x T x C -> T x B x C
x = x.transpose(0, 1) * nonpadding_mask_TB
hiddens = []
for layer in self.layers:
x = layer(x, encoder_padding_mask=padding_mask, attn_mask=attn_mask) * nonpadding_mask_TB
hiddens.append(x)
if self.use_last_norm:
x = self.layer_norm(x) * nonpadding_mask_TB
if return_hiddens:
x = torch.stack(hiddens, 0) # [L, T, B, C]
x = x.transpose(1, 2) # [L, B, T, C]
else:
x = x.transpose(0, 1) # [B, T, C]
return x
class FastspeechEncoder(FFTBlocks):
'''
compared to FFTBlocks:
- input is [B, T, H], not [B, T, C]
- supports "relative" positional encoding
'''
def __init__(self, hidden_size=None, num_layers=None, kernel_size=None, num_heads=2):
hidden_size = hparams['hidden_size'] if hidden_size is None else hidden_size
kernel_size = hparams['enc_ffn_kernel_size'] if kernel_size is None else kernel_size
num_layers = hparams['dec_layers'] if num_layers is None else num_layers
super().__init__(hidden_size, num_layers, kernel_size, num_heads=num_heads,
use_pos_embed=False) # use_pos_embed_alpha for compatibility
#self.embed_tokens = embed_tokens
self.embed_scale = math.sqrt(hidden_size)
self.padding_idx = 0
if hparams.get('rel_pos') is not None and hparams['rel_pos']:
self.embed_positions = RelPositionalEncoding(hidden_size, dropout_rate=0.0)
else:
self.embed_positions = SinusoidalPositionalEmbedding(
hidden_size, self.padding_idx, init_size=DEFAULT_MAX_TARGET_POSITIONS,
)
def forward(self, hubert):
"""
:param hubert: [B, T, H ]
:return: {
'encoder_out': [T x B x C]
}
"""
# encoder_padding_mask = txt_tokens.eq(self.padding_idx).data
encoder_padding_mask = (hubert==0).all(-1)
x = self.forward_embedding(hubert) # [B, T, H]
x = super(FastspeechEncoder, self).forward(x, encoder_padding_mask)
return x
def forward_embedding(self, hubert):
# embed tokens and positions
x = self.embed_scale * hubert
if hparams['use_pos_embed']:
positions = self.embed_positions(hubert)
x = x + positions
x = F.dropout(x, p=self.dropout, training=self.training)
return x
class FastspeechDecoder(FFTBlocks):
def __init__(self, hidden_size=None, num_layers=None, kernel_size=None, num_heads=None):
num_heads = hparams['num_heads'] if num_heads is None else num_heads
hidden_size = hparams['hidden_size'] if hidden_size is None else hidden_size
kernel_size = hparams['dec_ffn_kernel_size'] if kernel_size is None else kernel_size
num_layers = hparams['dec_layers'] if num_layers is None else num_layers
super().__init__(hidden_size, num_layers, kernel_size, num_heads=num_heads)
|