Spaces:
Configuration error
Configuration error
File size: 11,348 Bytes
ed1cdd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
from utils.hparams import hparams
import torch
from torch.nn import functional as F
from utils.pitch_utils import f0_to_coarse, denorm_f0, norm_f0
class Batch2Loss:
'''
pipeline: batch -> insert1 -> module1 -> insert2 -> module2 -> insert3 -> module3 -> insert4 -> module4 -> loss
'''
@staticmethod
def insert1(pitch_midi, midi_dur, is_slur, # variables
midi_embed, midi_dur_layer, is_slur_embed): # modules
'''
add embeddings for midi, midi_dur, slur
'''
midi_embedding = midi_embed(pitch_midi)
midi_dur_embedding, slur_embedding = 0, 0
if midi_dur is not None:
midi_dur_embedding = midi_dur_layer(midi_dur[:, :, None]) # [B, T, 1] -> [B, T, H]
if is_slur is not None:
slur_embedding = is_slur_embed(is_slur)
return midi_embedding, midi_dur_embedding, slur_embedding
@staticmethod
def module1(fs2_encoder, # modules
txt_tokens, midi_embedding, midi_dur_embedding, slur_embedding): # variables
'''
get *encoder_out* == fs2_encoder(*txt_tokens*, some embeddings)
'''
encoder_out = fs2_encoder(txt_tokens, midi_embedding, midi_dur_embedding, slur_embedding)
return encoder_out
@staticmethod
def insert2(encoder_out, spk_embed_id, spk_embed_dur_id, spk_embed_f0_id, src_nonpadding, # variables
spk_embed_proj): # modules
'''
1. add embeddings for pspk, spk_dur, sk_f0
2. get *dur_inp* ~= *encoder_out* + *spk_embed_dur*
'''
# add ref style embed
# Not implemented
# variance encoder
var_embed = 0
# encoder_out_dur denotes encoder outputs for duration predictor
# in speech adaptation, duration predictor use old speaker embedding
if hparams['use_spk_embed']:
spk_embed_dur = spk_embed_f0 = spk_embed = spk_embed_proj(spk_embed_id)[:, None, :]
elif hparams['use_spk_id']:
if spk_embed_dur_id is None:
spk_embed_dur_id = spk_embed_id
if spk_embed_f0_id is None:
spk_embed_f0_id = spk_embed_id
spk_embed = spk_embed_proj(spk_embed_id)[:, None, :]
spk_embed_dur = spk_embed_f0 = spk_embed
if hparams['use_split_spk_id']:
spk_embed_dur = spk_embed_dur(spk_embed_dur_id)[:, None, :]
spk_embed_f0 = spk_embed_f0(spk_embed_f0_id)[:, None, :]
else:
spk_embed_dur = spk_embed_f0 = spk_embed = 0
# add dur
dur_inp = (encoder_out + var_embed + spk_embed_dur) * src_nonpadding
return var_embed, spk_embed, spk_embed_dur, spk_embed_f0, dur_inp
@staticmethod
def module2(dur_predictor, length_regulator, # modules
dur_input, mel2ph, txt_tokens, all_vowel_tokens, ret, midi_dur=None): # variables
'''
1. get *dur* ~= dur_predictor(*dur_inp*)
2. (mel2ph is None): get *mel2ph* ~= length_regulater(*dur*)
'''
src_padding = (txt_tokens == 0)
dur_input = dur_input.detach() + hparams['predictor_grad'] * (dur_input - dur_input.detach())
if mel2ph is None:
dur, xs = dur_predictor.inference(dur_input, src_padding)
ret['dur'] = xs
dur = xs.squeeze(-1).exp() - 1.0
for i in range(len(dur)):
for j in range(len(dur[i])):
if txt_tokens[i,j] in all_vowel_tokens:
if j < len(dur[i])-1 and txt_tokens[i,j+1] not in all_vowel_tokens:
dur[i,j] = midi_dur[i,j] - dur[i,j+1]
if dur[i,j] < 0:
dur[i,j] = 0
dur[i,j+1] = midi_dur[i,j]
else:
dur[i,j]=midi_dur[i,j]
dur[:,0] = dur[:,0] + 0.5
dur_acc = F.pad(torch.round(torch.cumsum(dur, axis=1)), (1,0))
dur = torch.clamp(dur_acc[:,1:]-dur_acc[:,:-1], min=0).long()
ret['dur_choice'] = dur
mel2ph = length_regulator(dur, src_padding).detach()
else:
ret['dur'] = dur_predictor(dur_input, src_padding)
ret['mel2ph'] = mel2ph
return mel2ph
@staticmethod
def insert3(encoder_out, mel2ph, var_embed, spk_embed_f0, src_nonpadding, tgt_nonpadding): # variables
'''
1. get *decoder_inp* ~= gather *encoder_out* according to *mel2ph*
2. get *pitch_inp* ~= *decoder_inp* + *spk_embed_f0*
3. get *pitch_inp_ph* ~= *encoder_out* + *spk_embed_f0*
'''
decoder_inp = F.pad(encoder_out, [0, 0, 1, 0])
mel2ph_ = mel2ph[..., None].repeat([1, 1, encoder_out.shape[-1]])
decoder_inp = decoder_inp_origin = torch.gather(decoder_inp, 1, mel2ph_) # [B, T, H]
pitch_inp = (decoder_inp_origin + var_embed + spk_embed_f0) * tgt_nonpadding
pitch_inp_ph = (encoder_out + var_embed + spk_embed_f0) * src_nonpadding
return decoder_inp, pitch_inp, pitch_inp_ph
@staticmethod
def module3(pitch_predictor, pitch_embed, energy_predictor, energy_embed, # modules
pitch_inp, pitch_inp_ph, f0, uv, energy, mel2ph, is_training, ret): # variables
'''
1. get *ret['pitch_pred']*, *ret['energy_pred']* ~= pitch_predictor(*pitch_inp*), energy_predictor(*pitch_inp*)
2. get *pitch_embedding* ~= pitch_embed(f0_to_coarse(denorm_f0(*f0* or *pitch_pred*))
3. get *energy_embedding* ~= energy_embed(energy_to_coarse(*energy* or *energy_pred*))
'''
def add_pitch(decoder_inp, f0, uv, mel2ph, ret, encoder_out=None):
if hparams['pitch_type'] == 'ph':
pitch_pred_inp = encoder_out.detach() + hparams['predictor_grad'] * (encoder_out - encoder_out.detach())
pitch_padding = (encoder_out.sum().abs() == 0)
ret['pitch_pred'] = pitch_pred = pitch_predictor(pitch_pred_inp)
if f0 is None:
f0 = pitch_pred[:, :, 0]
ret['f0_denorm'] = f0_denorm = denorm_f0(f0, None, hparams, pitch_padding=pitch_padding)
pitch = f0_to_coarse(f0_denorm) # start from 0 [B, T_txt]
pitch = F.pad(pitch, [1, 0])
pitch = torch.gather(pitch, 1, mel2ph) # [B, T_mel]
pitch_embedding = pitch_embed(pitch)
return pitch_embedding
decoder_inp = decoder_inp.detach() + hparams['predictor_grad'] * (decoder_inp - decoder_inp.detach())
pitch_padding = (mel2ph == 0)
if hparams['pitch_type'] == 'cwt':
# NOTE: this part of script is *isolated* from other scripts, which means
# it may not be compatible with the current version.
pass
# pitch_padding = None
# ret['cwt'] = cwt_out = self.cwt_predictor(decoder_inp)
# stats_out = self.cwt_stats_layers(encoder_out[:, 0, :]) # [B, 2]
# mean = ret['f0_mean'] = stats_out[:, 0]
# std = ret['f0_std'] = stats_out[:, 1]
# cwt_spec = cwt_out[:, :, :10]
# if f0 is None:
# std = std * hparams['cwt_std_scale']
# f0 = self.cwt2f0_norm(cwt_spec, mean, std, mel2ph)
# if hparams['use_uv']:
# assert cwt_out.shape[-1] == 11
# uv = cwt_out[:, :, -1] > 0
elif hparams['pitch_ar']:
ret['pitch_pred'] = pitch_pred = pitch_predictor(decoder_inp, f0 if is_training else None)
if f0 is None:
f0 = pitch_pred[:, :, 0]
else:
ret['pitch_pred'] = pitch_pred = pitch_predictor(decoder_inp)
if f0 is None:
f0 = pitch_pred[:, :, 0]
if hparams['use_uv'] and uv is None:
uv = pitch_pred[:, :, 1] > 0
ret['f0_denorm'] = f0_denorm = denorm_f0(f0, uv, hparams, pitch_padding=pitch_padding)
if pitch_padding is not None:
f0[pitch_padding] = 0
pitch = f0_to_coarse(f0_denorm) # start from 0
pitch_embedding = pitch_embed(pitch)
return pitch_embedding
def add_energy(decoder_inp, energy, ret):
decoder_inp = decoder_inp.detach() + hparams['predictor_grad'] * (decoder_inp - decoder_inp.detach())
ret['energy_pred'] = energy_pred = energy_predictor(decoder_inp)[:, :, 0]
if energy is None:
energy = energy_pred
energy = torch.clamp(energy * 256 // 4, max=255).long() # energy_to_coarse
energy_embedding = energy_embed(energy)
return energy_embedding
# add pitch and energy embed
nframes = mel2ph.size(1)
pitch_embedding = 0
if hparams['use_pitch_embed']:
if f0 is not None:
delta_l = nframes - f0.size(1)
if delta_l > 0:
f0 = torch.cat((f0,torch.FloatTensor([[x[-1]] * delta_l for x in f0]).to(f0.device)),1)
f0 = f0[:,:nframes]
if uv is not None:
delta_l = nframes - uv.size(1)
if delta_l > 0:
uv = torch.cat((uv,torch.FloatTensor([[x[-1]] * delta_l for x in uv]).to(uv.device)),1)
uv = uv[:,:nframes]
pitch_embedding = add_pitch(pitch_inp, f0, uv, mel2ph, ret, encoder_out=pitch_inp_ph)
energy_embedding = 0
if hparams['use_energy_embed']:
if energy is not None:
delta_l = nframes - energy.size(1)
if delta_l > 0:
energy = torch.cat((energy,torch.FloatTensor([[x[-1]] * delta_l for x in energy]).to(energy.device)),1)
energy = energy[:,:nframes]
energy_embedding = add_energy(pitch_inp, energy, ret)
return pitch_embedding, energy_embedding
@staticmethod
def insert4(decoder_inp, pitch_embedding, energy_embedding, spk_embed, ret, tgt_nonpadding):
'''
*decoder_inp* ~= *decoder_inp* + embeddings for spk, pitch, energy
'''
ret['decoder_inp'] = decoder_inp = (decoder_inp + pitch_embedding + energy_embedding + spk_embed) * tgt_nonpadding
return decoder_inp
@staticmethod
def module4(diff_main_loss, # modules
norm_spec, decoder_inp_t, ret, K_step, batch_size, device): # variables
'''
training diffusion using spec as input and decoder_inp as condition.
Args:
norm_spec: (normalized) spec
decoder_inp_t: (transposed) decoder_inp
Returns:
ret['diff_loss']
'''
t = torch.randint(0, K_step, (batch_size,), device=device).long()
norm_spec = norm_spec.transpose(1, 2)[:, None, :, :] # [B, 1, M, T]
ret['diff_loss'] = diff_main_loss(norm_spec, t, cond=decoder_inp_t)
# nonpadding = (mel2ph != 0).float()
# ret['diff_loss'] = self.p_losses(x, t, cond, nonpadding=nonpadding)
|