File size: 9,485 Bytes
e90cb3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
# -*- coding: utf-8 -*-
"""french-to-english-translation-using-seq2seq.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1I_pfLKfUYqIWiX3przMoSFvczO_H83er
"""
import warnings
warnings.filterwarnings('ignore')
import string
import re
from unicodedata import normalize
import numpy as np
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.utils import to_categorical
from keras.models import Sequential,load_model
from keras.layers import LSTM,Dense,Embedding,RepeatVector,TimeDistributed
from keras.callbacks import EarlyStopping
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from nltk.translate.bleu_score import corpus_bleu
import pandas as pd
from string import punctuation
import matplotlib.pyplot as plt
from IPython.display import Markdown, display
def printmd(string):
# Print with Markdowns
display(Markdown(string))
from google.colab import drive
drive.mount('/content/drive')
total_sentences = 10000
# Load the dataset
dataset = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/Dataset/eng_-french.csv", nrows = total_sentences)
# What proportion of the sentences will be used for the test set
test_proportion = 0.1
train_test_threshold = int( (1-test_proportion) * total_sentences)
printmd(f'## {total_sentences} "parallel sentences" will be loaded (original sentence + its translation)')
printmd(f'## {train_test_threshold} "parallel sentences" will be used to train the model')
printmd(f'## {total_sentences-train_test_threshold} "parallel sentences" will be used to test the model')
# Shuffle the dataset
dataset = dataset.sample(frac=1, random_state=0)
dataset.iloc[1000:1010]
def clean(string):
# Clean the string
string = string.replace("\u202f"," ") # Replace no-break space with space
string = string.lower()
# Delete the punctuation and the numbers
for p in punctuation + "«»" + "0123456789":
string = string.replace(p," ")
string = re.sub('\s+',' ', string)
string = string.strip()
return string
# Clean the sentences
dataset["English words/sentences"] = dataset["English words/sentences"].apply(lambda x: clean(x))
dataset["French words/sentences"] = dataset["French words/sentences"].apply(lambda x: clean(x))
# Select one part of the dataset
dataset = dataset.values
dataset = dataset[:total_sentences]
# split into train/test
train, test = dataset[:train_test_threshold], dataset[train_test_threshold:]
# Define the name of the source and of the target
# This will be used in the outputs of this notebook
source_str, target_str = "French", "English"
# The index in the numpy array of the source and of the target
idx_src, idx_tar = 1, 0
# Display the result after cleaning
pd.DataFrame(dataset[1000:1010])
def create_tokenizer(lines):
# fit a tokenizer
tokenizer = Tokenizer()
tokenizer.fit_on_texts(lines)
return tokenizer
def max_len(lines):
# max sentence length
return max(len(line.split()) for line in lines)
def encode_sequences(tokenizer, length, lines):
# encode and pad sequences
X = tokenizer.texts_to_sequences(lines) # integer encode sequences
X = pad_sequences(X, maxlen=length, padding='post') # pad sequences with 0 values
return X
def encode_output(sequences, vocab_size):
# one hot encode target sequence
ylist = list()
for sequence in sequences:
encoded = to_categorical(sequence, num_classes=vocab_size)
ylist.append(encoded)
y = np.array(ylist)
y = y.reshape(sequences.shape[0], sequences.shape[1], vocab_size)
return y
# Prepare target tokenizer
tar_tokenizer = create_tokenizer(dataset[:, idx_tar])
tar_vocab_size = len(tar_tokenizer.word_index) + 1
tar_length = max_len(dataset[:, idx_tar])
printmd(f'\nTarget ({target_str}) Vocabulary Size: {tar_vocab_size}')
printmd(f'Target ({target_str}) Max Length: {tar_length}')
# Prepare source tokenizer
src_tokenizer = create_tokenizer(dataset[:, idx_src])
src_vocab_size = len(src_tokenizer.word_index) + 1
src_length = max_len(dataset[:, idx_src])
printmd(f'\nSource ({source_str}) Vocabulary Size: {src_vocab_size}')
printmd(f'Source ({source_str}) Max Length: {src_length}\n')
# Prepare training data
trainX = encode_sequences(src_tokenizer, src_length, train[:, idx_src])
trainY = encode_sequences(tar_tokenizer, tar_length, train[:, idx_tar])
trainY = encode_output(trainY, tar_vocab_size)
# Prepare test data
testX = encode_sequences(src_tokenizer, src_length, test[:, idx_src])
testY = encode_sequences(tar_tokenizer, tar_length, test[:, idx_tar])
testY = encode_output(testY, tar_vocab_size)
def create_model(src_vocab, tar_vocab, src_timesteps, tar_timesteps, n_units):
# Create the model
model = Sequential()
model.add(Embedding(src_vocab_size, n_units, input_length=src_length, mask_zero=True))
model.add(LSTM(n_units))
model.add(RepeatVector(tar_timesteps))
model.add(LSTM(n_units, return_sequences=True))
model.add(TimeDistributed(Dense(tar_vocab, activation='softmax')))
return model
# Create model
model = create_model(src_vocab_size, tar_vocab_size, src_length, tar_length, 256)
model.compile(optimizer='adam', loss='categorical_crossentropy')
history = model.fit(trainX,
trainY,
epochs=20,
batch_size=64,
validation_split=0.1,
verbose=1,
callbacks=[
EarlyStopping(
monitor='val_loss',
patience=10,
restore_best_weights=True
)
])
pd.DataFrame(history.history).plot()
plt.title("Loss")
plt.show()
def word_for_id(integer, tokenizer):
# map an integer to a word
for word, index in tokenizer.word_index.items():
if index == integer:
return word
return None
def predict_seq(model, tokenizer, source):
# generate target from a source sequence
prediction = model.predict(source, verbose=0)[0]
integers = [np.argmax(vector) for vector in prediction]
target = list()
for i in integers:
word = word_for_id(i, tokenizer)
if word is None:
break
target.append(word)
return ' '.join(target)
def compare_prediction(model, tokenizer, sources, raw_dataset, limit=20):
# evaluate a model
actual, predicted = [], []
src = f'{source_str.upper()} (SOURCE)'
tgt = f'{target_str.upper()} (TARGET)'
pred = f'AUTOMATIC TRANSLATION IN {target_str.upper()}'
print(f'{src:30} {tgt:25} {pred}\n')
for i, source in enumerate(sources): # translate encoded source text
source = source.reshape((1, source.shape[0]))
translation = predict_seq(model, tokenizer, source)
raw_target, raw_src = raw_dataset[i]
print(f'{raw_src:30} {raw_target:25} {translation}')
if i >= limit: # Display some of the result
break
# test on some training sequences
print('### Result on the Training Set ###')
compare_prediction(model, tar_tokenizer, trainX, train)
# test on some test sequences
print('\n\n### Result on the Test Set ###')
compare_prediction(model, tar_tokenizer, testX, test)
# It takes long to compute the BLEU Score
def bleu_score(model, tokenizer, sources, raw_dataset):
# Get the bleu score of a model
actual, predicted = [], []
for i, source in enumerate(sources):
# translate encoded source text
source = source.reshape((1, source.shape[0]))
translation = predict_seq(model, tar_tokenizer, source)
raw_target, raw_src = raw_dataset[i]
actual.append([raw_target.split()])
predicted.append(translation.split())
bleu_dic = {}
bleu_dic['1-grams'] = corpus_bleu(actual, predicted, weights=(1.0, 0, 0, 0))
bleu_dic['1-2-grams'] = corpus_bleu(actual, predicted, weights=(0.5, 0.5, 0, 0))
bleu_dic['1-3-grams'] = corpus_bleu(actual, predicted, weights=(0.3, 0.3, 0.3, 0))
bleu_dic['1-4-grams'] = corpus_bleu(actual, predicted, weights=(0.25, 0.25, 0.25, 0.25))
return bleu_dic
# Compute the BLEU Score
bleu_train = bleu_score(model, tar_tokenizer, trainX, train)
bleu_test = bleu_score(model, tar_tokenizer, testX, test)
plt.bar(x = bleu_train.keys(), height = bleu_train.values())
plt.title("BLEU Score with the training set")
plt.ylim((0,1))
plt.show()
plt.bar(x = bleu_test.keys(), height = bleu_test.values())
plt.title("BLEU Score with the test set")
plt.ylim((0,1))
plt.show()
model.save('/content/drive/MyDrive/Colab Notebooks/Models/french_to_english_translator.h5')
import gradio as gr
# Load the trained model
model = load_model('/content/drive/MyDrive/Colab Notebooks/Models/french_to_english_translator.h5')
# Function to translate French to English
def translate_french_to_english(french_sentence):
# Clean the input sentence
french_sentence = clean(french_sentence)
# Tokenize and pad the input sentence
input_sequence = encode_sequences(src_tokenizer, src_length, [french_sentence])
# Generate the translation
english_translation = predict_seq(model, tar_tokenizer, input_sequence)
return english_translation
# Create a Gradio interface
gr.Interface(
fn=translate_french_to_english,
inputs="text",
outputs="text",
title="French to English Translator",
description="Translate French sentences to English."
).launch() |