File size: 9,934 Bytes
9d2b7a1 be8c55c 9d2b7a1 be8c55c 9d2b7a1 be8c55c 9d2b7a1 671d92a 9d2b7a1 be8c55c 9d2b7a1 be8c55c 9d2b7a1 be8c55c 9d2b7a1 be8c55c 9d2b7a1 be8c55c 9d2b7a1 671d92a 9d2b7a1 671d92a 9d2b7a1 caa8eaa 9d2b7a1 caa8eaa 9d2b7a1 caa8eaa 9d2b7a1 caa8eaa 9d2b7a1 be8c55c 9d2b7a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import streamlit as st
import pandas as pd
import json
import plotly.express as px
from datetime import datetime
import plotly.graph_objs as go
import base64
from io import StringIO
import base64
def generate_download_link(df, filename):
csv = df.to_csv(index=False)
b64 = base64.b64encode(csv.encode()).decode()
button_style = (
"background-color: #4CAF50;"
"border: none;"
"color: white;"
"padding: 10px 20px;"
"text-align: center;"
"text-decoration: none;"
"display: inline-block;"
"font-size: 16px;"
"margin: 4px 2px;"
"cursor: pointer;"
"border-radius: 8px;"
)
return f'<a href="data:file/csv;base64,{b64}" download="{filename}" style="{button_style}">Download {filename}</a>'
def count_users(json_data, key):
return len(json_data[key])
def get_users(data, key, file_name):
users = []
json_data = data[file_name]
if key == 'string_list_data':
for item in json_data:
user_data = item[key][0]
timestamp = datetime.utcfromtimestamp(user_data['timestamp']).strftime('%m/%d/%Y %H:%M')
users.append({'Username': user_data['value'], 'Profile URL': user_data['href'], 'Timestamp': timestamp})
else:
for item in json_data[key]:
user_data = item['string_list_data'][0]
timestamp = datetime.utcfromtimestamp(user_data['timestamp']).strftime('%m/%d/%Y %H:%M')
users.append({'Username': user_data['value'], 'Profile URL': user_data['href'], 'Timestamp': timestamp})
return users
def get_missing_files(data):
required_files = [
'followers.json',
'following.json',
"follow_requests_you've_received.json",
'pending_follow_requests.json',
'recent_follow_requests.json',
'recently_unfollowed_accounts.json',
]
missing_files = [file for file in required_files if file not in data]
if ('followers.json' not in data and 'followers_1.json' not in data) or ('followers.json' in missing_files and 'followers_1.json' in data):
missing_files.remove('followers.json')
elif 'followers.json' in missing_files and 'followers_1.json' not in data:
missing_files.remove('followers.json')
missing_files.append('followers_1.json')
return missing_files
st.set_page_config(page_title='Instagram Insights')
st.title('Instagram Insights')
st.markdown('''
Welcome to Instagram Insights, a tool to help you analyze and understand your Instagram data like users not following you back or users you aren't following back.
Upload your Instagram data, and the app will visualize various insights such as followers, following, follow requests, and more.
Filter and download the data for further analysis. You can download your Instagram data by going to More > Your Activity > Download Your Information, and clicking on 'Request Download'.
Make sure you download the data as a JSON file. When the data is emailed to you, upload all the files in the 'followers_and_following' folder, which is in part 4 of the download folders, and that's it!
''')
uploaded_files = st.file_uploader('Upload your Instagram folder', type=['json'], accept_multiple_files=True)
if uploaded_files:
try:
st.sidebar.title('Filters')
users_not_following_me_back = st.sidebar.checkbox('Users Not Following Me Back')
users_im_not_following_back = st.sidebar.checkbox("Users I'm Not Following Back")
# data loading and parsing
data = {}
for file in uploaded_files:
file_name = file.name
file_content = file.getvalue().decode()
data[file_name] = json.loads(file_content)
# Check if 'followers.json' or 'followers_1.json' is present and load the followers accordingly
if 'followers.json' in data:
followers = get_users(data, 'relationships_followers', 'followers.json')
elif 'followers_1.json' in data:
followers = get_users(data, 'string_list_data', 'followers_1.json')
else:
st.error("Please upload the followers.json or followers_1.json file.")
following = get_users(data, 'relationships_following', 'following.json')
# Create bar chart with counts
chart_labels = [
'Followers',
'Following',
"Follow Requests Received",
"Pending Follow Requests",
"Recent Follow Requests",
"Recently Unfollowed Accounts",
]
if 'followers.json' in data:
followers_count = count_users(data['followers.json'], 'relationships_followers')
elif 'followers_1.json' in data:
followers_count = len(data['followers_1.json'])
chart_values = [
followers_count,
count_users(data['following.json'], 'relationships_following'),
count_users(data["follow_requests_you've_received.json"], 'relationships_follow_requests_received'),
count_users(data['pending_follow_requests.json'], 'relationships_follow_requests_sent'),
count_users(data['recent_follow_requests.json'], 'relationships_permanent_follow_requests'),
count_users(data['recently_unfollowed_accounts.json'], 'relationships_unfollowed_users'),
]
bar_chart = go.Figure(
data=[
go.Bar(x=chart_labels, y=chart_values, text=chart_values, textposition='auto')
]
)
bar_chart.update_layout(
title="Instagram Insights Summary",
xaxis_title="Categories",
yaxis_title="Count",
plot_bgcolor="rgba(0, 0, 0, 0)",
)
st.plotly_chart(bar_chart)
if users_not_following_me_back:
not_following_me_back = [user for user in following if user['Username'] not in [follower['Username'] for follower in followers]]
df_not_following_me_back = pd.DataFrame(not_following_me_back)
st.subheader(f"Users Not Following Me Back ({len(df_not_following_me_back)})")
st.write(df_not_following_me_back)
st.markdown(generate_download_link(df_not_following_me_back, "users_not_following_me_back.csv"), unsafe_allow_html=True)
if users_im_not_following_back:
im_not_following_back = [user for user in followers if user['Username'] not in [following_user['Username'] for following_user in following]]
df_im_not_following_back = pd.DataFrame(im_not_following_back)
st.subheader(f"Users I'm Not Following Back ({len(df_im_not_following_back)})")
st.write(df_im_not_following_back)
st.markdown(generate_download_link(df_im_not_following_back, "users_im_not_following_back.csv"), unsafe_allow_html=True)
# Add 'Files Filter' section to the sidebar
st.sidebar.title('Files Filter')
show_followers = st.sidebar.checkbox('Show Followers')
show_following = st.sidebar.checkbox('Show Following')
show_received_requests = st.sidebar.checkbox("Show Follow Requests Received")
show_pending_requests = st.sidebar.checkbox("Show Pending Follow Requests")
show_recent_requests = st.sidebar.checkbox("Show Recent Follow Requests")
show_unfollowed_accounts = st.sidebar.checkbox("Show Recently Unfollowed Accounts")
# Display the corresponding dataframes based on the checkboxes
if show_followers:
st.subheader('Followers')
st.write(pd.DataFrame(followers))
st.markdown(generate_download_link(pd.DataFrame(followers), "followers.csv"), unsafe_allow_html=True)
if show_following:
st.subheader('Following')
st.write(pd.DataFrame(following))
st.markdown(generate_download_link(pd.DataFrame(following), "following.csv"), unsafe_allow_html=True)
if show_received_requests:
received_requests = get_users(data, 'relationships_follow_requests_received', "follow_requests_you've_received.json")
st.subheader("Follow Requests Received")
st.write(pd.DataFrame(received_requests))
st.markdown(generate_download_link(pd.DataFrame(received_requests), "follow_requests_received.csv"), unsafe_allow_html=True)
if show_pending_requests:
pending_requests = get_users(data, 'relationships_follow_requests_sent', 'pending_follow_requests.json')
st.subheader("Pending Follow Requests")
st.write(pd.DataFrame(pending_requests))
st.markdown(generate_download_link(pd.DataFrame(pending_requests), "pending_follow_requests.csv"), unsafe_allow_html=True)
if show_recent_requests:
recent_requests = get_users(data, 'relationships_permanent_follow_requests', 'recent_follow_requests.json')
st.subheader("Recent Follow Requests")
st.write(pd.DataFrame(recent_requests))
st.markdown(generate_download_link(pd.DataFrame(recent_requests), "recent_follow_requests.csv"), unsafe_allow_html=True)
if show_unfollowed_accounts:
unfollowed_accounts = get_users(data, 'relationships_unfollowed_users', 'recently_unfollowed_accounts.json')
st.subheader("Recently Unfollowed Accounts")
st.write(pd.DataFrame(unfollowed_accounts))
st.markdown(generate_download_link(pd.DataFrame(unfollowed_accounts), "recently_unfollowed_accounts.csv"), unsafe_allow_html=True)
except KeyError as e:
missing_files = get_missing_files(data)
if missing_files:
missing_files_str = ", ".join(missing_files)
st.error(f"Please make sure to upload the following missing file(s): {missing_files_str}")
else:
st.error(f"An error occurred while processing your files: {e}")
else:
st.warning("Please upload your Instagram data files.") |