File size: 9,934 Bytes
9d2b7a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be8c55c
9d2b7a1
be8c55c
 
 
 
 
 
 
 
 
 
 
 
 
9d2b7a1
 
be8c55c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d2b7a1
 
 
 
 
 
671d92a
 
9d2b7a1
 
 
 
 
 
 
 
 
 
 
be8c55c
9d2b7a1
 
 
 
 
be8c55c
 
 
 
 
 
 
 
 
 
9d2b7a1
 
 
 
 
 
 
 
 
 
 
be8c55c
 
 
 
 
9d2b7a1
be8c55c
9d2b7a1
 
 
 
 
 
 
be8c55c
9d2b7a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
671d92a
9d2b7a1
 
 
 
 
 
671d92a
9d2b7a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caa8eaa
9d2b7a1
 
 
 
 
caa8eaa
9d2b7a1
 
 
 
 
caa8eaa
9d2b7a1
 
 
 
 
caa8eaa
9d2b7a1
 
 
 
be8c55c
 
 
 
 
 
 
 
 
9d2b7a1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import streamlit as st
import pandas as pd
import json
import plotly.express as px
from datetime import datetime
import plotly.graph_objs as go
import base64
from io import StringIO

import base64

def generate_download_link(df, filename):
    csv = df.to_csv(index=False)
    b64 = base64.b64encode(csv.encode()).decode()
    button_style = (
        "background-color: #4CAF50;"
        "border: none;"
        "color: white;"
        "padding: 10px 20px;"
        "text-align: center;"
        "text-decoration: none;"
        "display: inline-block;"
        "font-size: 16px;"
        "margin: 4px 2px;"
        "cursor: pointer;"
        "border-radius: 8px;"
    )
    return f'<a href="data:file/csv;base64,{b64}" download="{filename}" style="{button_style}">Download {filename}</a>'


def count_users(json_data, key):
    return len(json_data[key])

def get_users(data, key, file_name):
    users = []
    json_data = data[file_name]

    if key == 'string_list_data':
        for item in json_data:
            user_data = item[key][0]
            timestamp = datetime.utcfromtimestamp(user_data['timestamp']).strftime('%m/%d/%Y %H:%M')
            users.append({'Username': user_data['value'], 'Profile URL': user_data['href'], 'Timestamp': timestamp})
    else:
        for item in json_data[key]:
            user_data = item['string_list_data'][0]
            timestamp = datetime.utcfromtimestamp(user_data['timestamp']).strftime('%m/%d/%Y %H:%M')
            users.append({'Username': user_data['value'], 'Profile URL': user_data['href'], 'Timestamp': timestamp})

    return users


def get_missing_files(data):
    required_files = [
        'followers.json',
        'following.json',
        "follow_requests_you've_received.json",
        'pending_follow_requests.json',
        'recent_follow_requests.json',
        'recently_unfollowed_accounts.json',
    ]
    missing_files = [file for file in required_files if file not in data]

    if ('followers.json' not in data and 'followers_1.json' not in data) or ('followers.json' in missing_files and 'followers_1.json' in data):
        missing_files.remove('followers.json')
    elif 'followers.json' in missing_files and 'followers_1.json' not in data:
        missing_files.remove('followers.json')
        missing_files.append('followers_1.json')

    return missing_files



st.set_page_config(page_title='Instagram Insights')
st.title('Instagram Insights')

st.markdown('''
Welcome to Instagram Insights, a tool to help you analyze and understand your Instagram data like users not following you back or users you aren't following back.
Upload your Instagram data, and the app will visualize various insights such as followers, following, follow requests, and more.
Filter and download the data for further analysis. You can download your Instagram data by going to More > Your Activity > Download Your Information, and clicking on 'Request Download'.
Make sure you download the data as a JSON file. When the data is emailed to you, upload all the files in the 'followers_and_following' folder, which is in part 4 of the download folders, and that's it!
''')


uploaded_files = st.file_uploader('Upload your Instagram folder', type=['json'], accept_multiple_files=True)

if uploaded_files:
    try:
        st.sidebar.title('Filters')
        users_not_following_me_back = st.sidebar.checkbox('Users Not Following Me Back')
        users_im_not_following_back = st.sidebar.checkbox("Users I'm Not Following Back")

        # data loading and parsing
        data = {}
        for file in uploaded_files:
            file_name = file.name
            file_content = file.getvalue().decode()
            data[file_name] = json.loads(file_content)

        # Check if 'followers.json' or 'followers_1.json' is present and load the followers accordingly
        if 'followers.json' in data:
            followers = get_users(data, 'relationships_followers', 'followers.json')
        elif 'followers_1.json' in data:
            followers = get_users(data, 'string_list_data', 'followers_1.json')
        else:
            st.error("Please upload the followers.json or followers_1.json file.")

        following = get_users(data, 'relationships_following', 'following.json')

        # Create bar chart with counts
        chart_labels = [
            'Followers',
            'Following',
            "Follow Requests Received",
            "Pending Follow Requests",
            "Recent Follow Requests",
            "Recently Unfollowed Accounts",
        ]

        if 'followers.json' in data:
            followers_count = count_users(data['followers.json'], 'relationships_followers')
        elif 'followers_1.json' in data:
            followers_count = len(data['followers_1.json'])

        chart_values = [
            followers_count,
            count_users(data['following.json'], 'relationships_following'),
            count_users(data["follow_requests_you've_received.json"], 'relationships_follow_requests_received'),
            count_users(data['pending_follow_requests.json'], 'relationships_follow_requests_sent'),
            count_users(data['recent_follow_requests.json'], 'relationships_permanent_follow_requests'),
            count_users(data['recently_unfollowed_accounts.json'], 'relationships_unfollowed_users'),
        ]


        bar_chart = go.Figure(
            data=[
                go.Bar(x=chart_labels, y=chart_values, text=chart_values, textposition='auto')
            ]
        )

        bar_chart.update_layout(
            title="Instagram Insights Summary",
            xaxis_title="Categories",
            yaxis_title="Count",
            plot_bgcolor="rgba(0, 0, 0, 0)",
        )

        st.plotly_chart(bar_chart)
        
        if users_not_following_me_back:
            not_following_me_back = [user for user in following if user['Username'] not in [follower['Username'] for follower in followers]]
            df_not_following_me_back = pd.DataFrame(not_following_me_back)
            st.subheader(f"Users Not Following Me Back ({len(df_not_following_me_back)})")
            st.write(df_not_following_me_back)
            st.markdown(generate_download_link(df_not_following_me_back, "users_not_following_me_back.csv"), unsafe_allow_html=True)

        if users_im_not_following_back:
            im_not_following_back = [user for user in followers if user['Username'] not in [following_user['Username'] for following_user in following]]
            df_im_not_following_back = pd.DataFrame(im_not_following_back)
            st.subheader(f"Users I'm Not Following Back ({len(df_im_not_following_back)})")
            st.write(df_im_not_following_back)
            st.markdown(generate_download_link(df_im_not_following_back, "users_im_not_following_back.csv"), unsafe_allow_html=True)


        # Add 'Files Filter' section to the sidebar
        st.sidebar.title('Files Filter')
        show_followers = st.sidebar.checkbox('Show Followers')
        show_following = st.sidebar.checkbox('Show Following')
        show_received_requests = st.sidebar.checkbox("Show Follow Requests Received")
        show_pending_requests = st.sidebar.checkbox("Show Pending Follow Requests")
        show_recent_requests = st.sidebar.checkbox("Show Recent Follow Requests")
        show_unfollowed_accounts = st.sidebar.checkbox("Show Recently Unfollowed Accounts")

        # Display the corresponding dataframes based on the checkboxes
        if show_followers:
            st.subheader('Followers')
            st.write(pd.DataFrame(followers))
            st.markdown(generate_download_link(pd.DataFrame(followers), "followers.csv"), unsafe_allow_html=True)

        if show_following:
            st.subheader('Following')
            st.write(pd.DataFrame(following))
            st.markdown(generate_download_link(pd.DataFrame(following), "following.csv"), unsafe_allow_html=True)

        if show_received_requests:
            received_requests = get_users(data, 'relationships_follow_requests_received', "follow_requests_you've_received.json")
            st.subheader("Follow Requests Received")
            st.write(pd.DataFrame(received_requests))
            st.markdown(generate_download_link(pd.DataFrame(received_requests), "follow_requests_received.csv"), unsafe_allow_html=True)

        if show_pending_requests:
            pending_requests = get_users(data, 'relationships_follow_requests_sent', 'pending_follow_requests.json')
            st.subheader("Pending Follow Requests")
            st.write(pd.DataFrame(pending_requests))
            st.markdown(generate_download_link(pd.DataFrame(pending_requests), "pending_follow_requests.csv"), unsafe_allow_html=True)

        if show_recent_requests:
            recent_requests = get_users(data, 'relationships_permanent_follow_requests', 'recent_follow_requests.json')
            st.subheader("Recent Follow Requests")
            st.write(pd.DataFrame(recent_requests))
            st.markdown(generate_download_link(pd.DataFrame(recent_requests), "recent_follow_requests.csv"), unsafe_allow_html=True)

        if show_unfollowed_accounts:
            unfollowed_accounts = get_users(data, 'relationships_unfollowed_users', 'recently_unfollowed_accounts.json')
            st.subheader("Recently Unfollowed Accounts")
            st.write(pd.DataFrame(unfollowed_accounts))
            st.markdown(generate_download_link(pd.DataFrame(unfollowed_accounts), "recently_unfollowed_accounts.csv"), unsafe_allow_html=True)

    except KeyError as e:
        missing_files = get_missing_files(data)
        if missing_files:
            missing_files_str = ", ".join(missing_files)
            st.error(f"Please make sure to upload the following missing file(s): {missing_files_str}")
        else:
            st.error(f"An error occurred while processing your files: {e}")


else:
    st.warning("Please upload your Instagram data files.")