File size: 6,567 Bytes
fb4710e
 
 
 
 
099741f
fb4710e
 
 
 
099741f
fb4710e
 
 
 
 
 
 
 
 
 
 
 
bd28dd7
3f96f05
 
099741f
 
 
 
 
 
 
 
3f96f05
 
 
099741f
 
 
 
3f96f05
099741f
 
 
 
fb4710e
bd28dd7
 
 
 
 
 
 
 
 
 
 
 
fb4710e
 
 
 
 
 
 
 
 
 
 
099741f
 
fb4710e
 
 
 
 
 
 
099741f
fb4710e
 
 
 
 
 
 
 
 
 
 
 
099741f
bd28dd7
099741f
 
 
 
 
 
 
 
 
 
 
 
 
 
fb4710e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
099741f
fb4710e
 
099741f
 
 
fb4710e
 
 
 
862259b
fb4710e
862259b
bd28dd7
fb4710e
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import io
import os
import pandas as pd
import streamlit as st

from concurrent.futures import ThreadPoolExecutor
from datetime import datetime
from langchain_community.document_loaders.pdf import PyPDFLoader
from langchain_core.documents.base import Document
from langchain_text_splitters import TokenTextSplitter
from process import Process
from tempfile import NamedTemporaryFile
from stqdm import stqdm

buffer = io.BytesIO()

st.cache_data()
st.set_page_config(page_title="NutriGenMe Paper Extractor")
st.title("NutriGenMe - Paper Extraction")
st.markdown("<div style='text-align: left; color: white; font-size: 16px'>In its latest version, the app is equipped to extract essential information from papers, including tables in both horizontal and vertical orientations, images, and text exclusively.</div><br>", unsafe_allow_html=True)

uploaded_files = st.file_uploader("Upload Paper(s) here :", type="pdf", accept_multiple_files=True)

col1, col2, col3 = st.columns(3)

with col1:
    models = (
        'gpt-4-turbo',
        'gemini-1.5-pro-latest'
        # 'llama-3-sonar-large-32k-chat',
        # 'mixtral-8x7b-instruct',
    )
    model = st.selectbox(
        'Model selection:', models, key='model'
    )

with col2:
    tokens = (
        24000,
        16000,
        8000
    )
    chunk_option = st.selectbox(
        'Token amounts per process:', tokens, key='token'
    )
    chunk_overlap = 0

with col3:
    models_val = (
        'gpt-4-turbo',
        'gemini-1.5-pro-latest'
        # 'llama-3-sonar-large-32k-chat',
        # 'mixtral-8x7b-instruct',
    )
    model_val = st.selectbox(
        'Model validator selection:', models, key='model_val'
    )


if uploaded_files:
    journals = []
    parseButtonHV = st.button("Get Result", key='table_HV')

    if parseButtonHV:
        with st.status("Extraction in progress ...", expanded=True) as status:
            start_time = datetime.now()

            for uploaded_file in stqdm(uploaded_files):
                with NamedTemporaryFile(dir='.', suffix=".pdf", delete=eval(os.getenv('DELETE_TEMP_PDF', 'True'))) as pdf:
                    pdf.write(uploaded_file.getbuffer())

                    # Load Documents
                    loader = PyPDFLoader(pdf.name)
                    pages = loader.load()

                    chunk_size = 120000
                    chunk_overlap = 0
                    docs = pages

                    # Split Documents
                    if chunk_option:
                        docs = [Document('\n'.join([page.page_content for page in pages]))]
                        docs[0].metadata = {'source': pages[0].metadata['source']}

                        chunk_size = chunk_option
                        chunk_overlap = int(0.25 * chunk_size)

                    text_splitter = TokenTextSplitter.from_tiktoken_encoder(
                        chunk_size=chunk_size, chunk_overlap=chunk_overlap
                    )
                    chunks = text_splitter.split_documents(docs)

                    # Start extraction process in parallel
                    process = Process(model, model_val)
                    with ThreadPoolExecutor() as executor:
                        result_gsd = executor.submit(process.get_entity, (chunks, 'gsd'))
                        result_summ = executor.submit(process.get_entity, (chunks, 'summ'))
                        result = executor.submit(process.get_entity, (chunks, 'all'))
                        result_one = executor.submit(process.get_entity_one, [c.page_content for c in chunks[:1]])
                        result_table = executor.submit(process.get_table, pdf.name)

                        result_gsd = result_gsd.result()
                        result_summ = result_summ.result()
                        result = result.result()
                        result_one = result_one.result()
                        res_gene, res_snp, res_dis = result_table.result()

                    # Combine Result
                    result['Genes'] = res_gene + result_gsd['Genes']
                    result['SNPs'] = res_snp + result_gsd['SNPs']
                    result['Diseases'] = res_dis + result_gsd['Diseases']
                    result['Conclusion'] = result_summ
                    for k in result_one.keys():
                        result[k] = result_one[k]

                    if len(result['Genes']) == 0:
                        result['Genes'] = ['']
                    
                    num_rows = max(max(len(result['Genes']), len(result['SNPs'])), len(result['Diseases']))

                    # Adjust Genes, SNPs, Diseases
                    for k in ['Genes', 'SNPs', 'Diseases']:
                        while len(result[k]) < num_rows:
                            result[k].append('')

                        # Temporary handling
                        result[k] = result[k][:num_rows]

                    # Key Column
                    result = {key: value if isinstance(value, list) else [value] * num_rows for key, value in result.items()}

                    dataframe = pd.DataFrame(result)
                    dataframe = dataframe[['Genes', 'SNPs', 'Diseases', 'Title', 'Authors', 'Publisher Name', 'Publication Year', 'Population', 'Sample Size', 'Study Methodology', 'Study Level', 'Conclusion']]
                    dataframe = dataframe[dataframe['Genes'].astype(bool)].reset_index(drop=True)
                    dataframe.drop_duplicates(['Genes', 'SNPs'], inplace=True)
                    dataframe.reset_index(drop=True, inplace=True)
                    
                    # Validate Result
                    cleaned_df, cleaned_llm_df = process.validate(dataframe)

                    end_time = datetime.now()
                    st.write("Success in ", round((end_time.timestamp() - start_time.timestamp()) / 60, 2), "minutes")

                    st.dataframe(cleaned_df)
                    with pd.ExcelWriter(buffer, engine='xlsxwriter') as writer:
                        cleaned_df.to_excel(writer, sheet_name='Result')
                        cleaned_llm_df.to_excel(writer, sheet_name='Validate with LLM')
                        dataframe.to_excel(writer, sheet_name='Original')
                        writer.close()

                    st.download_button(
                        label="Save Result",
                        data=buffer,
                        file_name=f"{uploaded_file.name.replace('.pdf', '')}_{chunk_option}.xlsx",
                        mime='application/vnd.ms-excel'
                    )