File size: 5,467 Bytes
fb4710e
 
 
 
 
 
 
099741f
fb4710e
 
63bec36
fb4710e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
099741f
fb4710e
63bec36
fb4710e
099741f
 
 
 
 
 
fb4710e
099741f
fb4710e
099741f
fb4710e
099741f
 
 
fb4710e
099741f
 
 
fb4710e
099741f
 
 
fb4710e
099741f
 
 
 
 
fb4710e
099741f
 
 
 
 
 
fb4710e
099741f
 
 
 
 
 
ca71749
099741f
fb4710e
099741f
fb4710e
099741f
 
 
 
 
 
 
fb4710e
099741f
fb4710e
099741f
 
fb4710e
099741f
 
fb4710e
099741f
 
 
fb4710e
099741f
 
 
fb4710e
099741f
 
 
 
 
fb4710e
099741f
 
 
 
fb4710e
099741f
 
 
fb4710e
099741f
 
 
 
 
 
ca71749
099741f
 
 
 
 
 
 
 
 
 
 
63bec36
099741f
 
63bec36
099741f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from dotenv import load_dotenv
from img2table.document import Image
from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain
from langchain.chains.combine_documents.reduce import ReduceDocumentsChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.llm import LLMChain
from langchain.prompts import PromptTemplate
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_openai import ChatOpenAI
from pdf2image import convert_from_path
from prompt import *
from table_detector import detection_transform, device, model, ocr, outputs_to_objects

import io
import json
import os
import pandas as pd
import re
import torch

load_dotenv()

prompts = {
    'gsd': [prompt_entity_gsd_chunk, prompt_entity_gsd_combine],
    'summ': [prompt_entity_summ_chunk, prompt_entity_summ_combine],
    'all': [prompt_entities_chunk, prompt_entities_combine]
}

class Process():

    def __init__(self, llm):

        if llm.startswith('gpt'):
            self.llm = ChatOpenAI(temperature=0, model_name=llm)
        elif llm.startswith('gemini'):
            self.llm = ChatGoogleGenerativeAI(temperature=0, model=llm)
        else:
            self.llm = ChatOpenAI(temperature=0, model_name=llm, api_key=os.environ['PERPLEXITY_API_KEY'], base_url="https://api.perplexity.ai")

    def get_entity(self, data):

        chunks, types = data

        map_template = prompts[types][0]
        map_prompt = PromptTemplate.from_template(map_template)
        map_chain = LLMChain(llm=self.llm, prompt=map_prompt)

        reduce_template = prompts[types][1]
        reduce_prompt = PromptTemplate.from_template(reduce_template)
        reduce_chain = LLMChain(llm=self.llm, prompt=reduce_prompt)

        combine_chain = StuffDocumentsChain(
            llm_chain=reduce_chain, document_variable_name="doc_summaries"
        )

        reduce_documents_chain = ReduceDocumentsChain(
            combine_documents_chain=combine_chain,
            collapse_documents_chain=combine_chain,
            token_max=100000,
        )

        map_reduce_chain = MapReduceDocumentsChain(
            llm_chain=map_chain,
            reduce_documents_chain=reduce_documents_chain,
            document_variable_name="docs",
            return_intermediate_steps=False,
        )

        result = map_reduce_chain.invoke(chunks)['output_text']
        print(types)
        print(result)
        if types != 'summ':
            result = re.findall('(\{[^}]+\})', result)[0]
            return eval(result)

        return result

    def get_entity_one(self, chunks):

        result = self.llm.invoke(prompt_entity_one_chunk.format(chunks)).content

        print('One')
        print(result)
        result = re.findall('(\{[^}]+\})', result)[0]

        return eval(result)

    def get_table(self, path):

        images = convert_from_path(path)
        tables = []

        # Loop pages
        for image in images:

            pixel_values = detection_transform(image).unsqueeze(0).to(device)
            with torch.no_grad():
                outputs = model(pixel_values)

            id2label = model.config.id2label
            id2label[len(model.config.id2label)] = "no object"
            detected_tables = outputs_to_objects(outputs, image.size, id2label)

            # Loop table in page (if any)
            for idx in range(len(detected_tables)):
                cropped_table = image.crop(detected_tables[idx]["bbox"])
                if detected_tables[idx]["label"] == 'table rotated':
                    cropped_table = cropped_table.rotate(270, expand=True)

                # TODO: what is the perfect threshold?
                if detected_tables[idx]['score'] > 0.9:
                    print(detected_tables[idx])
                    tables.append(cropped_table)

        genes = []
        snps = []
        diseases = []

        # Loop tables
        for table in tables:

            buffer = io.BytesIO()
            table.save(buffer, format='PNG')
            image = Image(buffer)

            # Extract to dataframe
            extracted_tables = image.extract_tables(ocr=ocr, implicit_rows=True, borderless_tables=True, min_confidence=0)

            if len(extracted_tables) == 0:
                continue

            # Combine multiple dataframe
            df_table = extracted_tables[0].df
            for extracted_table in extracted_tables[1:]:
                df_table = pd.concat([df_table, extracted_table.df]).reset_index(drop=True)

            df_table = df_table.fillna('')

            # Ask LLM with JSON data
            json_table = df_table.to_json(orient='records')
            str_json_table = json.dumps(json.loads(json_table), indent=2)

            result = self.llm.invoke(prompt_table.format(str_json_table)).content
            print('table')
            print(result)
            result = result[result.find('['):result.rfind(']')+1]
            try:
                result = eval(result)
            except SyntaxError:
                result = []

            for res in result:
                res_gene = res['Genes']
                res_snp = res['SNPs']
                res_disease = res['Diseases']

                for snp in res_snp:
                    genes.append(res_gene)
                    snps.append(snp)
                    diseases.append(res_disease)

        print(genes, snps, diseases)
        return genes, snps, diseases