File size: 8,855 Bytes
fb4710e
 
 
 
 
 
 
 
099741f
fb4710e
 
862259b
fb4710e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
099741f
fb4710e
099741f
fb4710e
099741f
 
 
 
 
 
fb4710e
099741f
fb4710e
099741f
fb4710e
099741f
 
 
fb4710e
099741f
 
 
fb4710e
099741f
 
 
fb4710e
099741f
 
 
 
 
fb4710e
099741f
 
 
 
 
 
fb4710e
099741f
 
 
 
 
 
 
 
fb4710e
099741f
fb4710e
099741f
 
 
 
 
 
 
fb4710e
099741f
fb4710e
099741f
 
 
 
fb4710e
099741f
 
fb4710e
099741f
 
 
fb4710e
099741f
 
 
fb4710e
099741f
 
 
 
 
fb4710e
099741f
 
 
 
fb4710e
099741f
 
 
 
fb4710e
099741f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb4710e
099741f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb4710e
 
099741f
 
fb4710e
099741f
fb4710e
 
 
 
 
 
099741f
 
862259b
099741f
fb4710e
099741f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
from datetime import datetime
from dotenv import load_dotenv
from img2table.document import Image
from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain
from langchain.chains.combine_documents.reduce import ReduceDocumentsChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.llm import LLMChain
from langchain.prompts import PromptTemplate
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_openai import ChatOpenAI
from pdf2image import convert_from_path
from prompt import prompt_entity_gsd_chunk, prompt_entity_gsd_combine, prompt_entity_summ_chunk, prompt_entity_summ_combine, prompt_entities_chunk, prompt_entities_combine, prompt_entity_one_chunk, prompt_table, prompt_validation
from table_detector import detection_transform, device, model, ocr, outputs_to_objects

import io
import json
import os
import pandas as pd
import re
import torch

load_dotenv()

prompts = {
    'gsd': [prompt_entity_gsd_chunk, prompt_entity_gsd_combine],
    'summ': [prompt_entity_summ_chunk, prompt_entity_summ_combine],
    'all': [prompt_entities_chunk, prompt_entities_combine]
}

class Process():

    def __init__(self, llm):

        if llm.startswith('gpt'):
            self.llm = ChatOpenAI(temperature=0, model_name=llm)
        elif llm.startswith('gemini'):
            self.llm = ChatGoogleGenerativeAI(temperature=0, model=llm)
        else:
            self.llm = ChatOpenAI(temperature=0, model_name=llm, api_key=os.environ['PERPLEXITY_API_KEY'], base_url="https://api.perplexity.ai")

    def get_entity(self, data):

        chunks, types = data

        map_template = prompts[types][0]
        map_prompt = PromptTemplate.from_template(map_template)
        map_chain = LLMChain(llm=self.llm, prompt=map_prompt)

        reduce_template = prompts[types][1]
        reduce_prompt = PromptTemplate.from_template(reduce_template)
        reduce_chain = LLMChain(llm=self.llm, prompt=reduce_prompt)

        combine_chain = StuffDocumentsChain(
            llm_chain=reduce_chain, document_variable_name="doc_summaries"
        )

        reduce_documents_chain = ReduceDocumentsChain(
            combine_documents_chain=combine_chain,
            collapse_documents_chain=combine_chain,
            token_max=100000,
        )

        map_reduce_chain = MapReduceDocumentsChain(
            llm_chain=map_chain,
            reduce_documents_chain=reduce_documents_chain,
            document_variable_name="docs",
            return_intermediate_steps=False,
        )

        result = map_reduce_chain.invoke(chunks)['output_text']
        print(types)
        print(result)
        if types != 'summ':
            result = re.findall('(\{[^}]+\})', result)[0]
            return eval(result)
        
        return result

    def get_entity_one(self, chunks):

        result = self.llm.invoke(prompt_entity_one_chunk.format(chunks)).content

        print('One')
        print(result)
        result = re.findall('(\{[^}]+\})', result)[0]

        return eval(result)

    def get_table(self, path):

        start_time = datetime.now()
        images = convert_from_path(path)
        print('PDF to Image', round((datetime.now().timestamp() - start_time.timestamp()) / 60, 2), "minutes")
        tables = []

        # Loop pages
        for image in images:

            pixel_values = detection_transform(image).unsqueeze(0).to(device)
            with torch.no_grad():
                outputs = model(pixel_values)

            id2label = model.config.id2label
            id2label[len(model.config.id2label)] = "no object"
            detected_tables = outputs_to_objects(outputs, image.size, id2label)

            # Loop table in page (if any)
            for idx in range(len(detected_tables)):
                cropped_table = image.crop(detected_tables[idx]["bbox"])
                if detected_tables[idx]["label"] == 'table rotated':
                    cropped_table = cropped_table.rotate(270, expand=True)

                # TODO: what is the perfect threshold?
                if detected_tables[idx]['score'] > 0.9:
                    print(detected_tables[idx])
                    tables.append(cropped_table)

        print('Detect table from image', round((datetime.now().timestamp() - start_time.timestamp()) / 60, 2), "minutes")
        genes = []
        snps = []
        diseases = []

        # Loop tables
        for table in tables:

            buffer = io.BytesIO()
            table.save(buffer, format='PNG')
            image = Image(buffer)
            
            # Extract to dataframe
            extracted_tables = image.extract_tables(ocr=ocr, implicit_rows=True, borderless_tables=True, min_confidence=0)

            if len(extracted_tables) == 0:
                continue

            # Combine multiple dataframe
            df_table = extracted_tables[0].df
            for extracted_table in extracted_tables[1:]:
                df_table = pd.concat([df_table, extracted_table.df]).reset_index(drop=True)

            df_table.loc[0] = df_table.loc[0].fillna('')

            # Identify multiple rows (in dataframe) as one row (in image)
            rows = []
            indexes = []
            for i in df_table.index:
                if not df_table.loc[i].isna().any():
                    if len(indexes) > 0:
                        rows.append(indexes)
                    indexes = []
                indexes.append(i)
            rows.append(indexes)

            df_table_cleaned = pd.DataFrame(columns=df_table.columns)
            for row in rows:
                row_str = df_table.loc[row[0]]
                for idx in row[1:]:
                    row_str += ' ' + df_table.loc[idx].fillna('')
                row_str = row_str.str.strip()
                df_table_cleaned.loc[len(df_table_cleaned)] = row_str

            # Ask LLM with JSON data
            json_table = df_table_cleaned.to_json(orient='records')
            str_json_table = json.dumps(json.loads(json_table), indent=2)

            result = self.llm.invoke(prompt_table.format(str_json_table)).content
            print('table')
            print(result)
            result = result[result.find('['):result.rfind(']')+1]
            try:
                result = eval(result)
            except SyntaxError:
                result = []

            for res in result:
                res_gene = res['Genes']
                res_snp = res['SNPs']
                res_disease = res['Diseases']

                for snp in res_snp:
                    genes.append(res_gene)
                    snps.append(snp)
                    diseases.append(res_disease)

        print('OCR table to extract', round((datetime.now().timestamp() - start_time.timestamp()) / 60, 2), "minutes")
        print(genes, snps, diseases)
        
        return genes, snps, diseases

    def validate(self, df):

        df = df.fillna('')
        df['Genes'] = df['Genes'].str.upper()
        df['SNPs'] = df['SNPs'].str.lower()

        # Check if there is two gene names
        sym = ['-', '/', '|']
        for i in df.index:
            gene = df.loc[i, 'Genes']
            for s in sym:
                if s in gene:
                    genes = gene.split(s)
                    df.loc[i + 0.5] = df.loc[i]
                    df = df.sort_index().reset_index(drop=True)
                    df.loc[i, 'Genes'], df.loc[i + 1, 'Genes'] = genes[0], genes[1]

        # Check if there is SNPs without 'rs'
        for i in df.index:
            safe = True
            snp = df.loc[i, 'SNPs']
            if re.fullmatch('rs(\d)+|', snp):
                pass
            elif re.fullmatch('ts(\d)+', snp):
                snp = 'r' + snp[1:]
            elif re.fullmatch('s(\d)+', snp):
                snp = 'r' + snp
            elif re.fullmatch('(\d)+', snp):
                snp = 'rs' + snp
            else:
                safe = False
                df = df.drop(i)
                
            if safe:
                df.loc[i, 'SNPs'] = snp

        df.reset_index(drop=True, inplace=True)

        # Validate genes and diseases with LLM
        json_table = df[['Genes', 'SNPs', 'Diseases']].to_json(orient='records')
        str_json_table = json.dumps(json.loads(json_table), indent=2)

        result = self.llm.invoke(input=prompt_validation.format(str_json_table)).content
        print('val')
        print(result)

        result = result[result.find('['):result.rfind(']')+1]
        try:
            result = eval(result)
        except SyntaxError:
            result = []

        df_val = pd.DataFrame(result)
        df_val = df_val.merge(df.head(1).drop(['Genes', 'SNPs', 'Diseases'], axis=1), 'cross')

        # TODO: How to validate genes and SNPs with ground truth?

        return df, df_val