File size: 22,602 Bytes
0a3525d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
import random
from dataclasses import dataclass
from itertools import chain
from pathlib import Path
from random import Random
from typing import Optional, Union

import grpc
import numpy as np
import pyarrow.parquet as pq
import torch
import torch.nn.functional as F
from datasets.download.streaming_download_manager import xopen
from huggingface_hub import HfApi
from lightning import LightningDataModule
from torch.distributed import get_rank, get_world_size, is_initialized
from torch.utils.data import DataLoader, IterableDataset, get_worker_info
from transformers import AutoTokenizer

from fish_speech.datasets.protos.text_data_pb2 import SampledData
from fish_speech.datasets.protos.text_data_stream import read_pb_stream
from fish_speech.text.clean import clean_text
from fish_speech.utils import RankedLogger
from fish_speech.utils.braceexpand import braceexpand

log = RankedLogger(__name__, rank_zero_only=True)

CODEBOOK_PAD_TOKEN_ID = 0
CODEBOOK_EOS_TOKEN_ID = 1


def split_by_rank_worker(files):
    # We need to know the total number of devices
    # to split the data properly

    total_devices = 1
    if is_initialized():
        total_devices = get_world_size()

    worker_info = get_worker_info()
    if worker_info is not None:
        total_devices *= worker_info.num_workers

    if len(files) < total_devices:
        # Repeat the files N times to match the number of devices
        files = files * (total_devices // len(files) + 1)

    # DDP
    if is_initialized():
        files = files[get_rank() :: get_world_size()]

    # Split by worker
    if worker_info is not None:
        files = files[worker_info.id :: worker_info.num_workers]

    return files


class StreamTextDataset(IterableDataset):
    def __init__(
        self,
        files: Optional[Union[list[str], str]] = None,
        prefix: Optional[str] = None,
        seed: int = 42,
        parquet_batch_size: int = 10000,
        repo: str = "uonlp/CulturaX",
        max_length: int = 1024,
        tokenizer: AutoTokenizer = None,
    ):
        super().__init__()

        self.seed = seed
        self.parquet_batch_size = parquet_batch_size
        self.repo = repo
        self.max_length = max_length
        self.tokenizer = tokenizer

        if files is None and prefix is None:
            raise ValueError("Either files or prefix must be specified")

        if prefix is not None:
            files = HfApi().list_repo_files(repo, repo_type="dataset")
            files = [
                f for f in files if f.startswith(prefix) and f.endswith(".parquet")
            ]
            log.info(f"Found {len(files)} files in {repo} with prefix {prefix}")
        else:
            if isinstance(files, str):
                files = [files]

            files = list(chain.from_iterable(map(braceexpand, files)))
            log.info(f"Expanded {len(files)} files in {repo}")

        # Get sharded files
        self.files = sorted(files)
        Random(seed).shuffle(self.files)

    def __iter__(self):
        files = split_by_rank_worker(self.files)
        random.shuffle(files)

        for filename in files:
            try:
                yield from self.parse_data(filename)
            except Exception as e:
                log.exception(f"Failed to parse {filename}: {e}")

    def parse_data(self, filename: str):
        for data in self.parse_data_internal(filename):
            text = data["text"]

            # encode
            tokens = self.tokenizer.encode(
                text,
                add_special_tokens=False,
                truncation=False,
                max_length=10**6,
            )

            # Random choice self.max_length
            if len(tokens) > self.max_length:
                start = random.randint(0, len(tokens) - self.max_length)
                tokens = tokens[start : start + self.max_length - 1]

            tokens = (
                [self.tokenizer.bos_token_id] + tokens + [self.tokenizer.eos_token_id]
            )
            # Pad dims
            placeholder_multi_codebook = torch.zeros((4, len(tokens)), dtype=torch.long)

            tokens = torch.concat(
                [
                    torch.tensor([tokens], dtype=torch.long),
                    placeholder_multi_codebook,
                ],
                dim=0,
            )
            labels = tokens.clone()
            tokens = tokens[:, :-1]
            labels = labels[:, 1:]
            labels[1:] = -100  # remove all placeholders

            yield {"tokens": tokens, "labels": labels}

    def parse_data_internal(self, filename: str):
        url = f"https://huggingface.co/datasets/{self.repo}/resolve/main/{filename}"

        with xopen(url, mode="rb") as stream:
            parquet_file = pq.ParquetFile(stream)

            for batch in parquet_file.iter_batches(
                batch_size=self.parquet_batch_size, columns=["text"]
            ):
                # In-batch shuffling
                texts = [{"text": text.as_py()} for text in batch["text"]]
                random.shuffle(texts)
                yield from texts


class AutoAugTextDataset(IterableDataset):
    """
    Auto Augment Dataset by Speaker

    1. Random concatenate multiple sentences from the same speaker to form a longer sentence
    2. Automatically normalize the text

    For interactive mode, we use the following format (multiple sequences):
    <s> [INST] [SPK: speaker] text [/INST] ... [INST] text [/INST] </s>

    For non-interactive mode, we use the following format (one long sequence):
    <s> [INST] text [/INST] ... </s>
    """

    def __init__(
        self,
        proto_files: list[str],
        seed: int = 42,
        interactive_prob: float = 0.5,
        max_length: int = 1024,
        tokenizer: AutoTokenizer = None,
        use_speaker: bool = True,
        causual: bool = True,
        use_negative_samples: bool = False,
        num_codebooks: Optional[int] = None,
    ):
        """
        Args:
            proto_files: proto buf files if using local data
            seed: random seed
            interactive_prob: probability to use interactive mode
            max_length: max length of the text
            tokenizer: tokenizer
            use_speaker: include speaker information in the prompt
            causual: use causual sampling when using local data, disable will lead to random sampling
            use_negative_samples: generate negative samples
            num_codebooks: number of codebooks, if None, it will be automatically detected
        """

        super().__init__()

        assert 0 <= interactive_prob <= 1, "interactive_prob must be in [0, 1]"

        self.seed = seed
        self.max_length = max_length
        self.tokenizer = tokenizer
        self.interactive_prob = interactive_prob
        self.use_speaker = use_speaker
        self.proto_files = proto_files
        self.causual = causual
        self.use_negative_samples = use_negative_samples
        self.num_codebooks = num_codebooks

        self.semantic_token_id = self.tokenizer.convert_tokens_to_ids("<|semantic|>")
        self.groups = None

    def init_mock_data_server(self):
        if self.groups is not None:
            return

        # Expand the proto files
        expanded_proto_files = []
        for filename in self.proto_files:
            for i in braceexpand(filename):
                i = Path(i)
                if i.is_file():
                    expanded_proto_files.append(i)
                elif i.is_dir():
                    expanded_proto_files.extend(i.rglob("*.proto"))
                    expanded_proto_files.extend(i.rglob("*.protos"))
                else:
                    raise ValueError(f"{i} is not a file or directory")

        expanded_proto_files = sorted(expanded_proto_files)
        Random(self.seed).shuffle(expanded_proto_files)

        self.groups = []
        shard_proto_files = split_by_rank_worker(expanded_proto_files)
        log.info(
            f"Reading {len(shard_proto_files)} / {len(expanded_proto_files)} files"
        )

        count = 0
        for filename in shard_proto_files:
            with open(filename, "rb") as f:
                for text_data in read_pb_stream(f):
                    self.groups.append(text_data)
                    count += 1

        log.info(f"Read total {count} groups of data")

        # Shuffle the lines
        Random(self.seed).shuffle(self.groups)
        self.group_weights = [len(i.sentences) for i in self.groups]

    def __iter__(self):
        while True:
            yield self.augment()

    def tokenize_sentence(self, sentence: str):
        sentence = clean_text(sentence)
        tokens = self.tokenizer.encode(
            f"{sentence}",
            max_length=10**6,
            add_special_tokens=False,
            truncation=False,
        )
        return sentence, len(tokens)

    def sample_data(self):
        if self.groups is None:
            self.init_mock_data_server()

        # Shuffle unique lines, estimate that each sample is at least 20 tokens
        num_samples = self.max_length // 20

        # choice group based on their number of samples
        group = random.choices(self.groups, weights=self.group_weights, k=1)[0]

        if self.causual:
            # Sample in order
            if num_samples >= len(group.sentences):
                samples = group.sentences
            else:
                begin = random.randint(0, len(group.sentences) - num_samples)
                samples = group.sentences[begin : begin + num_samples]
        else:
            samples = random.choices(
                group.sentences, k=min(num_samples, len(group.sentences))
            )

        return SampledData(
            source=group.source,
            name=group.name,
            samples=samples,
        )

    def augment(self):
        # Random sample based on speaker using a truncated normal distribution
        a = torch.tensor([0], dtype=torch.float32)
        torch.nn.init.trunc_normal_(
            a,
            mean=self.max_length // 2,
            std=self.max_length // 4,
            a=10,
            b=self.max_length,
        )
        remaining_tokens = a.long().item() - 4

        final_text, final_semantic = [], []
        response = self.sample_data()
        if len(response.samples) == 0:
            # Invalid group
            return None

        samples = list(response.samples)
        idx = 0
        use_interactive = random.random() < self.interactive_prob

        all_tokens, all_labels = [], []
        while remaining_tokens > 0 and len(samples) > 0:
            sentence = samples.pop(0)

            text = random.choice(sentence.texts)
            text, length = self.tokenize_sentence(text)
            remaining_tokens -= length + len(sentence.semantics[0].values)

            if use_interactive is False:
                final_text.append(text)
                final_semantic.append(sentence.semantics)
            else:
                # For interactive mode, we only apply speaker for the first sentence
                # [INST] [SPK: speaker] text [/INST] ... [INST] text [/INST]
                tokens, labels = self.pack_sentences(
                    sentences=[text],
                    semantics=[sentence.semantics],
                    speaker=response.name if (self.use_speaker and idx == 0) else None,
                    add_bos=idx == 0,
                )

                all_tokens.append(tokens)
                all_labels.append(labels)

            idx += 1

        if use_interactive is False:
            tokens, labels = self.pack_sentences(
                final_text,
                semantics=final_semantic,
                speaker=response.name if self.use_speaker else None,
                add_bos=True,
            )
            all_tokens.append(tokens)
            all_labels.append(labels)

        tokens = torch.cat(all_tokens, dim=1)
        labels = torch.cat(all_labels, dim=1)

        # Verify that the length is correct
        assert tokens.size(1) == labels.size(1), f"{tokens.size(1)} != {labels.size(1)}"

        # Verify bos token
        assert tokens[0, 0] == self.tokenizer.bos_token_id

        data = {"tokens": tokens, "labels": labels}

        if self.use_negative_samples:
            negative_samples = self.generate_negative_samples(all_tokens, all_labels)
            data.update(negative_samples)

        return data

    def generate_negative_samples(self, all_tokens, all_labels):
        new_tokens, new_labels = [], []

        for tokens, labels in zip(all_tokens, all_labels):
            # If all codebooks are not -100, we find where it starts
            start = torch.where(labels[1:].sum(0) != -100 * (labels.size(0) - 1))[0][0]
            assert (labels[1:, start:] != -100).all()  # This shouldn't happen

            mode = random.choice(["repeat", "lost", "noise"])
            begin = random.randint(start, labels.size(1) - 1)
            end = random.randint(begin, labels.size(1) - 1)

            if mode == "repeat":
                tokens = torch.cat(
                    [
                        tokens[:, :begin],
                        tokens[:, begin:end],
                        tokens[:, begin:end],
                        tokens[:, end:],
                    ],
                    dim=1,
                )
                labels = torch.cat(
                    [
                        labels[:, :begin],
                        labels[:, begin:end],
                        labels[:, begin:end],
                        labels[:, end:],
                    ],
                    dim=1,
                )
            elif mode == "lost":
                tokens = torch.cat([tokens[:, :begin], tokens[:, end:]], dim=1)
                labels = torch.cat([labels[:, :begin], labels[:, end:]], dim=1)
            elif mode == "noise":
                middle_tokens, middle_labels = (
                    tokens[:, begin:end],
                    labels[:, begin:end],
                )
                random_order0 = torch.randperm(middle_tokens.size(1))
                random_order1 = torch.randperm(middle_tokens.size(1))
                middle_tokens = middle_tokens[:, random_order0]
                middle_labels = middle_labels[:, random_order1]
                tokens = torch.cat(
                    [tokens[:, :begin], middle_tokens, tokens[:, end:]], dim=1
                )
                labels = torch.cat(
                    [labels[:, :begin], middle_labels, labels[:, end:]], dim=1
                )

            new_tokens.append(tokens)
            new_labels.append(labels)

        tokens = torch.cat(new_tokens, dim=1)
        labels = torch.cat(new_labels, dim=1)

        # Verify that the length is correct
        assert tokens.size(1) == labels.size(1), f"{tokens.size(1)} != {labels.size(1)}"

        return {"negative_tokens": tokens, "negative_labels": labels}

    def pack_sentences(
        self,
        sentences: list[str],
        semantics=list,
        speaker: Optional[str] = None,
        add_bos: bool = True,
    ):
        if speaker is not None:
            sentences = [f"[SPK: {speaker}]"] + sentences

        final_text = "<|im_start|>user<|im_sep|>" + " ".join(sentences) + "<|im_end|>"
        final_text = final_text + "<|im_start|>assistant<|im_sep|>"

        encoded = self.tokenizer.encode(
            final_text,
            add_special_tokens=False,
            truncation=False,
            max_length=10**6,
        )
        semantic_length = sum([len(i[0].values) for i in semantics])
        prompt_length = len(encoded)
        num_codebooks = (
            len(semantics[0]) if self.num_codebooks is None else self.num_codebooks
        )

        bos_bias = 1 if add_bos else 0

        # Pack the tokens and semantics (add <s> and </s> to semantic tokens)
        tokens = (
            encoded
            + [self.semantic_token_id] * semantic_length
            + self.tokenizer.convert_tokens_to_ids(
                ["<|im_end|>", "<|end_of_sequence|>"]
            )
        )

        if add_bos:
            tokens = [self.tokenizer.bos_token_id] + tokens

        # Codebook bos/padding: 0, eos: 1
        codes = [
            [CODEBOOK_PAD_TOKEN_ID] * (prompt_length + bos_bias)
            for _ in range(num_codebooks)
        ]
        for segment in semantics:
            for book_idx, book in zip(range(num_codebooks), segment):
                for j in book.values:
                    codes[book_idx].append(int(j) + 2)

        for book in codes:
            book.extend([CODEBOOK_EOS_TOKEN_ID] * 2)

        tokens = [tokens] + codes

        tokens = torch.tensor(tokens, dtype=torch.long)
        labels = tokens.clone()

        # Mask out the <s> tokens for semantic, predict semantic tokens only
        # Since we don't mask out the input tokens, the language modeling still works
        labels[1:, : (prompt_length + bos_bias)] = -100

        tokens = tokens[:, :-1]
        labels = labels[:, 1:]

        # Verify the padding is correct, and the last token is eos
        assert add_bos is False or tokens[0, 0] == self.tokenizer.bos_token_id
        assert (tokens[1:, : prompt_length + bos_bias] == CODEBOOK_PAD_TOKEN_ID).all()
        assert labels[0, -1] == self.tokenizer.eos_token_id
        assert (labels[1:, -2:] == CODEBOOK_EOS_TOKEN_ID).all()

        return tokens, labels


@dataclass
class TextDataCollator:
    tokenizer: AutoTokenizer
    max_length: int = 1024

    def __call__(self, examples):
        if "negative_tokens" in examples:
            positive_examples = []
            negative_examples = []

            for i in examples:
                positive_examples.append(
                    {
                        "tokens": i["tokens"],
                        "labels": i["labels"],
                    }
                )
                negative_examples.append(
                    {
                        "tokens": i["negative_tokens"],
                        "labels": i["negative_labels"],
                    }
                )

            examples = positive_examples + negative_examples

        return self.batchify(examples)

    def batchify(self, examples, tokens_key="tokens", labels_key="labels"):
        tokens, attention_masks, labels = [], [], []

        # Calculate the max length
        max_tokens_length = 0
        for example in examples:
            max_tokens_length = max(max_tokens_length, example[tokens_key].size(1))
        max_tokens_length = min(max_tokens_length, self.max_length)

        for example in examples:
            _tokens = example[tokens_key][:, :max_tokens_length]
            _labels = example[labels_key][:, :max_tokens_length]
            _attention_mask = torch.ones((max_tokens_length,), dtype=torch.bool)
            tokens_length = _tokens.size(1)
            _attention_mask[:tokens_length] = False

            assert tokens_length == _labels.size(
                1
            ), f"{tokens_length} != {_labels.size(1)}"

            if tokens_length < max_tokens_length:
                _tokens = F.pad(
                    _tokens,
                    (0, max_tokens_length - tokens_length),
                    value=self.tokenizer.eos_token_id,
                )
                _tokens[1:, tokens_length:] = CODEBOOK_PAD_TOKEN_ID
                _labels = F.pad(
                    _labels, (0, max_tokens_length - _labels.size(1)), value=-100
                )

            tokens.append(_tokens)
            attention_masks.append(_attention_mask)
            labels.append(_labels)

        tokens = torch.stack(tokens, dim=0)
        attention_masks = torch.stack(attention_masks, dim=0)
        labels = torch.stack(labels, dim=0)

        return {
            "inputs": tokens,
            "attention_masks": attention_masks,
            "labels": labels,
        }


class InterleaveDataset(IterableDataset):
    def __init__(
        self,
        datasets: list[IterableDataset],
        probabilities: list[float],
        seed: int = 42,
    ):
        super().__init__()

        self.datasets = datasets
        self.probabilities = probabilities
        self.seed = seed

    def __iter__(self):
        rng = np.random.default_rng(self.seed)
        dataset_iterators = [iter(dataset) for dataset in self.datasets]

        while True:
            # Random choice one
            dataset_idx = rng.choice(len(self.datasets), p=self.probabilities)
            dataset_iterator = dataset_iterators[dataset_idx]

            try:
                yield next(dataset_iterator)
            except StopIteration:
                # Exhausted, create a new iterator
                dataset_iterators[dataset_idx] = iter(self.datasets[dataset_idx])
                yield next(dataset_iterators[dataset_idx])


class TextDataModule(LightningDataModule):
    def __init__(
        self,
        train_dataset: Union[StreamTextDataset, AutoAugTextDataset, InterleaveDataset],
        val_dataset: Union[StreamTextDataset, AutoAugTextDataset, InterleaveDataset],
        batch_size: int = 32,
        tokenizer: AutoTokenizer = None,
        max_length: int = 1024,
        num_workers: int = 4,
    ):
        super().__init__()

        self.train_dataset = train_dataset
        self.val_dataset = val_dataset
        self.batch_size = batch_size
        self.tokenizer = tokenizer
        self.max_length = max_length
        self.num_workers = num_workers

    def train_dataloader(self):
        return DataLoader(
            self.train_dataset,
            batch_size=self.batch_size,
            collate_fn=TextDataCollator(self.tokenizer, self.max_length),
            num_workers=self.num_workers,
        )

    def val_dataloader(self):
        return DataLoader(
            self.val_dataset,
            batch_size=self.batch_size,
            collate_fn=TextDataCollator(self.tokenizer, self.max_length),
            num_workers=self.num_workers,
        )


if __name__ == "__main__":
    from tqdm import tqdm

    ds = AutoAugTextDataset(
        ["data/protos"],
        tokenizer=AutoTokenizer.from_pretrained("fishaudio/fish-speech-1"),
        use_speaker=False,
        interactive_prob=1.0,
        use_negative_samples=False,
    )

    for i in ds:
        print(ds.tokenizer.decode(i["tokens"][0], skip_special_tokens=False))
        # i["labels"][0][i["labels"][0] == -100] = 0
        # print(ds.tokenizer.decode(i["labels"][0], skip_special_tokens=False))
        break