Spaces:
Runtime error
Runtime error
File size: 1,958 Bytes
f4f5a40 488d50e f03ec98 dff69a4 d7a0eb1 dff69a4 d7a0eb1 1c53cc7 6853f8f d7a0eb1 1c53cc7 f4f5a40 d7a0eb1 1c53cc7 d7a0eb1 1c53cc7 f03ec98 6853f8f 1c53cc7 f03ec98 1c53cc7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import gradio as gr
from audioseal import AudioSeal
import torch
import numpy as np
import traceback
# Function to handle audio data as NumPy arrays
def detect_watermark(audio_data, sample_rate):
try:
# Extract the audio array from the tuple (audio_data, sample_rate)
audio_array, _ = audio_data
# Ensure audio_array is 2D (channels, samples). If it's mono, add an axis.
if audio_array.ndim == 1:
audio_array = np.expand_dims(audio_array, axis=0)
# Convert NumPy array to tensor
waveform = torch.tensor(audio_array, dtype=torch.float32)
# Ensure waveform is 2D (batch, channels, samples) for AudioSeal
if waveform.ndim == 2:
waveform = waveform.unsqueeze(0)
# Initialize and use the AudioSeal detector
detector = AudioSeal.load_detector("audioseal_detector_16bits")
result, message = detector.detect_watermark(waveform, message_threshold=0.5)
# Interpret and return the detection result
detection_result = "AI-generated" if result else "genuine"
return f"This audio is likely {detection_result} based on watermark detection."
except Exception as e:
error_message = f"An error occurred: {str(e)}"
traceback_str = ''.join(traceback.format_tb(e.__traceback__))
full_error_message = f"{error_message}\n{traceback_str}"
return full_error_message
interface = gr.Interface(fn=detect_watermark,
inputs=[gr.Audio(label="Upload your audio", type="numpy"),
gr.Number(label="Sample Rate", value=44100, visible=False)],
outputs="text",
title="Deep Fake Defender: AI Voice Cloning Detection",
description="Upload an audio file to check if it's AI-generated or genuine.")
if __name__ == "__main__":
interface.launch(debug=True)
|