File size: 12,334 Bytes
bc85824 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import argparse\n",
"import os\n",
"import random\n",
"\n",
"import numpy as np\n",
"import torch\n",
"import torch.backends.cudnn as cudnn\n",
"from tqdm import tqdm\n",
"\n",
"from torchvision import transforms\n",
"from torchvision.transforms.functional import InterpolationMode\n",
"from torchvision.utils import save_image\n",
"\n",
"from pope_loader import POPEDataSet\n",
"from minigpt4.common.dist_utils import get_rank\n",
"from minigpt4.models import load_preprocess\n",
"\n",
"from minigpt4.common.config import Config\n",
"from minigpt4.common.dist_utils import get_rank\n",
"from minigpt4.common.registry import registry\n",
"\n",
"# imports modules for registration\n",
"from minigpt4.datasets.builders import *\n",
"from minigpt4.models import *\n",
"from minigpt4.processors import *\n",
"from minigpt4.runners import *\n",
"from minigpt4.tasks import *\n",
"\n",
"from PIL import Image\n",
"from torchvision.utils import save_image\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib as mpl\n",
"import seaborn\n",
"import json\n",
"\n",
"\n",
"MODEL_EVAL_CONFIG_PATH = {\n",
" \"minigpt4\": \"eval_configs/minigpt4_eval.yaml\",\n",
" \"instructblip\": \"eval_configs/instructblip_eval.yaml\",\n",
" \"lrv_instruct\": \"eval_configs/lrv_instruct_eval.yaml\",\n",
" \"shikra\": \"eval_configs/shikra_eval.yaml\",\n",
" \"llava-1.5\": \"eval_configs/llava-1.5_eval.yaml\",\n",
"}\n",
"\n",
"POPE_PATH = {\n",
" \"random\": \"coco_pope/coco_pope_random.json\",\n",
" \"popular\": \"coco_pope/coco_pope_popular.json\",\n",
" \"adversarial\": \"coco_pope/coco_pope_adversarial.json\",\n",
"}\n",
"\n",
"INSTRUCTION_TEMPLATE = {\n",
" \"minigpt4\": \"###Human: <Img><ImageHere></Img> <question> ###Assistant:\",\n",
" \"instructblip\": \"<ImageHere><question>\",\n",
" \"lrv_instruct\": \"###Human: <Img><ImageHere></Img> <question> ###Assistant:\",\n",
" \"shikra\": \"USER: <im_start><ImageHere><im_end> <question> ASSISTANT:\",\n",
" \"llava-1.5\": \"USER: <ImageHere> <question> ASSISTANT:\"\n",
"}\n",
"\n",
"\n",
"def setup_seeds(config):\n",
" seed = config.run_cfg.seed + get_rank()\n",
"\n",
" random.seed(seed)\n",
" np.random.seed(seed)\n",
" torch.manual_seed(seed)\n",
" cudnn.benchmark = False\n",
" cudnn.deterministic = True\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"parser = argparse.ArgumentParser(description=\"POPE-Adv evaluation on LVLMs.\")\n",
"parser.add_argument(\"--model\", type=str, help=\"model\")\n",
"parser.add_argument(\"--gpu-id\", type=int, help=\"specify the gpu to load the model.\")\n",
"parser.add_argument(\n",
" \"--options\",\n",
" nargs=\"+\",\n",
" help=\"override some settings in the used config, the key-value pair \"\n",
" \"in xxx=yyy format will be merged into config file (deprecate), \"\n",
" \"change to --cfg-options instead.\",\n",
")\n",
"parser.add_argument(\"--data_path\", type=str, default=\"/mnt/petrelfs/share_data/wangjiaqi/mllm-data-alg/COCO_2014/ori/val2014/val2014/\", help=\"data path\")\n",
"parser.add_argument(\"--batch_size\", type=int, help=\"batch size\")\n",
"parser.add_argument(\"--num_workers\", type=int, default=2, help=\"num workers\")\n",
"args = parser.parse_known_args()[0]\n",
"\n",
"\n",
"args.model = \"llava-1.5\"\n",
"# args.model = \"instructblip\"\n",
"# args.model = \"minigpt4\"\n",
"# args.model = \"shikra\"\n",
"args.gpu_id = \"0\"\n",
"args.batch_size = 1\n",
"\n",
"\n",
"os.environ[\"CUDA_VISIBLE_DEVICES\"] = str(args.gpu_id)\n",
"args.cfg_path = MODEL_EVAL_CONFIG_PATH[args.model]\n",
"cfg = Config(args)\n",
"setup_seeds(cfg)\n",
"device = torch.device(\"cuda\") if torch.cuda.is_available() else \"cpu\"\n",
"\n",
"# ========================================\n",
"# Model Initialization\n",
"# ========================================\n",
"print('Initializing Model')\n",
"\n",
"model_config = cfg.model_cfg\n",
"model_config.device_8bit = args.gpu_id\n",
"model_cls = registry.get_model_class(model_config.arch)\n",
"model = model_cls.from_config(model_config).to(device)\n",
"model.eval()\n",
"processor_cfg = cfg.get_config().preprocess\n",
"processor_cfg.vis_processor.eval.do_normalize = False\n",
"vis_processors, txt_processors = load_preprocess(processor_cfg)\n",
"print(vis_processors[\"eval\"].transform)\n",
"print(\"Done!\")\n",
"\n",
"mean = (0.48145466, 0.4578275, 0.40821073)\n",
"std = (0.26862954, 0.26130258, 0.27577711)\n",
"norm = transforms.Normalize(mean, std)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"image_path = \"XXX.jpg\"\n",
"raw_image = Image.open(image_path)\n",
"plt.imshow(raw_image)\n",
"plt.show()\n",
"raw_image = raw_image.convert(\"RGB\")\n",
"image = vis_processors[\"eval\"](raw_image).unsqueeze(0)\n",
"image = image.to(device)\n",
"print(image.shape)\n",
"\n",
"qu = \"Please describe this image in detail.\"\n",
"# qu = \"What can you see in this image?\"\n",
"# qu = \"Introduce about this image.\"\n",
"# qu = \"Is there a bottle in the image?\"\n",
"template = INSTRUCTION_TEMPLATE[args.model]\n",
"qu = template.replace(\"<question>\", qu)\n",
"\n",
"\n",
"with torch.inference_mode():\n",
" with torch.no_grad():\n",
" out = model.generate(\n",
" {\"image\": norm(image), \"prompt\":qu}, \n",
" use_nucleus_sampling=False, \n",
" num_beams=1,\n",
" max_new_tokens=512,\n",
" output_attentions=True,\n",
" # ours_decoding=True,\n",
" # scale_factor=50,\n",
" # threshold=15.0,\n",
" # num_attn_candidates=5,\n",
" )\n",
"print(out[0])\n",
"print(\"\\n\")\n",
"\n",
"\n",
"qu_append = out[0]\n",
"qu = qu + qu_append\n",
"\n",
"\n",
"with torch.inference_mode():\n",
" with torch.no_grad():\n",
" out = model.generate(\n",
" {\"image\": norm(image), \"prompt\":qu}, \n",
" use_nucleus_sampling=False, \n",
" num_beams=1,\n",
" max_new_tokens=512,\n",
" output_attentions=True,\n",
" # ours_decoding=True,\n",
" # scale_factor=50,\n",
" # threshold=15.0,\n",
" # num_attn_candidates=5,\n",
" output_attentions=True,\n",
" return_dict_in_generate=True,\n",
" )\n",
"\n",
"# print(len(out[-1]))\n",
"# print(out.attentions[0].shape) \n",
"\n",
"# print(torch.topk(out.attentions[31].mean(1).squeeze().mean(0), k=10))\n",
"\n",
"attns = [attn.clone() for attn in out.attentions]\n",
"# [layer_id, bs, head_id, qk, v]\n",
"\n",
"# for i in range(len(attns)):\n",
"# for j in range(len(attns[i])):\n",
"# attns[i][j] = attns[i][j] * 5\n",
"# attns[i][j] = attns[i][j].clamp(0, 1)\n",
"\n",
"\n",
"try:\n",
" p_before, p_after = qu.split('<ImageHere>')\n",
" p_before = model.system_message + p_before if args.model in [\"shikra\", \"llava-1.5\"] else p_before\n",
" p_before_tokens = model.llama_tokenizer(\n",
" p_before, return_tensors=\"pt\", add_special_tokens=False).to(\"cuda\").input_ids\n",
" p_after_tokens = model.llama_tokenizer(\n",
" p_after, return_tensors=\"pt\", add_special_tokens=False).to(\"cuda\").input_ids\n",
" p_before_tokens = model.llama_tokenizer.convert_ids_to_tokens(p_before_tokens[0].tolist())\n",
" p_after_tokens = model.llama_tokenizer.convert_ids_to_tokens(p_after_tokens[0].tolist())\n",
"\n",
" bos = torch.ones([1, 1], dtype=torch.int64, device=\"cuda\") * model.llama_tokenizer.bos_token_id\n",
" bos_tokens = model.llama_tokenizer.convert_ids_to_tokens(bos[0].tolist())\n",
"except:\n",
" p_before, p_after = qu.split('<ImageHere>')\n",
" p_before = model.system_message + p_before if args.model in [\"shikra\", \"llava-1.5\"] else p_before\n",
" p_before_tokens = model.llm_tokenizer(\n",
" p_before, return_tensors=\"pt\", add_special_tokens=False).to(\"cuda\").input_ids\n",
" p_after_tokens = model.llm_tokenizer(\n",
" p_after, return_tensors=\"pt\", add_special_tokens=False).to(\"cuda\").input_ids\n",
" p_before_tokens = model.llm_tokenizer.convert_ids_to_tokens(p_before_tokens[0].tolist())\n",
" p_after_tokens = model.llm_tokenizer.convert_ids_to_tokens(p_after_tokens[0].tolist())\n",
"\n",
" bos = torch.ones([1, 1], dtype=torch.int64, device=\"cuda\") * model.llm_tokenizer.bos_token_id\n",
" bos_tokens = model.llm_tokenizer.convert_ids_to_tokens(bos[0].tolist())\n",
"\n",
"\n",
"\n",
"print(qu)\n",
"# print(p_before_tokens)\n",
"# print(p_after_tokens)\n",
"# print(bos_tokens)\n",
"\n",
"NUM_IMAGE_TOKENS = 256 if args.model == \"shikra\" else 32\n",
"NUM_IMAGE_TOKENS = 576 if args.model == \"llava-1.5\" else NUM_IMAGE_TOKENS\n",
"tokens = bos_tokens + p_before_tokens + ['img_token'] * NUM_IMAGE_TOKENS + p_after_tokens\n",
"seq_len = len(tokens)\n",
"len1 = len(bos_tokens + p_before_tokens)\n",
"if args.model == \"instructblip\":\n",
" len2 = len(bos_tokens + p_before_tokens + ['img_token'] * NUM_IMAGE_TOKENS + p_after_tokens[:p_after_tokens.index(\".\")+1])\n",
"else:\n",
" len2 = len(bos_tokens + p_before_tokens + ['img_token'] * NUM_IMAGE_TOKENS + p_after_tokens[:p_after_tokens.index(\":\")+1])\n",
"# print(len(tokens))\n",
"print(len1, len2)\n",
"\n",
"tokens = [str(idx) + \"-\" + token for idx, token in enumerate(tokens)]\n",
"print(tokens)\n",
"\n",
"attn_last = attns[-1].max(1).values.data.squeeze()\n",
"attn_last = attn_last / attn_last.sum(-1, keepdim=True)\n",
"attn_max = torch.cat([attn.unsqueeze(0) for attn in attns], dim=0).max(2).values.data.max(0).values.data.squeeze()\n",
"attn_max = attn_max / attn_max.sum(-1, keepdim=True)\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"path = \"text_feat/self_attention/{}/\".format(args.model)\n",
"if not os.path.exists(path):\n",
" os.mkdir(path)\n",
"\n",
"plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 \n",
"plt.rcParams['xtick.direction'] = 'in'\n",
"# plt.rcParams['ytick.direction'] = 'in'\n",
"def draw(data, x, y, ax):\n",
" seaborn.heatmap(data, \n",
" xticklabels=x, square=True, yticklabels=y, vmin=0, vmax=1.0, \n",
" cbar=False, ax=ax)\n",
"fig, axs = plt.subplots(1, 1, figsize=(100, 100))#布置画板\n",
"draw(5*attn_last.cpu().numpy(), x=tokens, y=tokens, ax=axs)\n",
"plt.show()\n",
"# plt.savefig(\"xxx.pdf\", dpi=1600)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|