File size: 7,579 Bytes
bc85824 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import argparse
import os
import random
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from tqdm import tqdm
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from torchvision.utils import save_image
from pope_loader import POPEDataSet
from minigpt4.common.dist_utils import get_rank
from minigpt4.models import load_preprocess
from minigpt4.common.config import Config
from minigpt4.common.dist_utils import get_rank
from minigpt4.common.registry import registry
# imports modules for registration
from minigpt4.datasets.builders import *
from minigpt4.models import *
from minigpt4.processors import *
from minigpt4.runners import *
from minigpt4.tasks import *
MODEL_EVAL_CONFIG_PATH = {
"minigpt4": "eval_configs/minigpt4_eval.yaml",
"instructblip": "eval_configs/instructblip_eval.yaml",
"lrv_instruct": "eval_configs/lrv_instruct_eval.yaml",
"shikra": "eval_configs/shikra_eval.yaml",
"llava-1.5": "eval_configs/llava-1.5_eval.yaml",
}
POPE_PATH = {
"random": "pope_coco/coco_pope_random.json",
"popular": "pope_coco/coco_pope_popular.json",
"adversarial": "pope_coco/coco_pope_adversarial.json",
}
INSTRUCTION_TEMPLATE = {
"minigpt4": "###Human: <Img><ImageHere></Img> <question> ###Assistant:",
"instructblip": "<ImageHere><question>",
"lrv_instruct": "###Human: <Img><ImageHere></Img> <question> ###Assistant:",
"shikra": "USER: <im_start><ImageHere><im_end> <question> ASSISTANT:",
"llava-1.5": "USER: <ImageHere> <question> ASSISTANT:"
}
def parse_args():
parser = argparse.ArgumentParser(description="POPE-Adv evaluation on LVLMs.")
parser.add_argument("--model", type=str, help="model")
parser.add_argument("--pope-type", type=str, help="model")
# parser.add_argument("--cfg-path", required=True, help="path to configuration file.")
parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.")
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
parser.add_argument("--data_path", type=str, default="COCO_2014/val2014/", help="data path")
parser.add_argument("--batch_size", type=int, default=1, help="batch size")
parser.add_argument("--num_workers", type=int, default=2, help="num workers")
parser.add_argument("--beam", type=int)
parser.add_argument("--sample", action='store_true')
parser.add_argument("--scale_factor", type=float, default=50)
parser.add_argument("--threshold", type=int, default=15)
parser.add_argument("--num_attn_candidates", type=int, default=5)
parser.add_argument("--penalty_weights", type=float, default=1.0)
args = parser.parse_args()
return args
def setup_seeds(config):
seed = config.run_cfg.seed + get_rank()
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
def print_acc(pred_list, label_list):
pos = 1
neg = 0
yes_ratio = pred_list.count(1) / len(pred_list)
# unknown_ratio = pred_list.count(2) / len(pred_list)
TP, TN, FP, FN = 0, 0, 0, 0
for pred, label in zip(pred_list, label_list):
if pred == pos and label == pos:
TP += 1
elif pred == pos and label == neg:
FP += 1
elif pred == neg and label == neg:
TN += 1
elif pred == neg and label == pos:
FN += 1
print('TP\tFP\tTN\tFN\t')
print('{}\t{}\t{}\t{}'.format(TP, FP, TN, FN))
precision = float(TP) / float(TP + FP)
recall = float(TP) / float(TP + FN)
f1 = 2*precision*recall / (precision + recall)
acc = (TP + TN) / (TP + TN + FP + FN)
print('Accuracy: {}'.format(acc))
print('Precision: {}'.format(precision))
print('Recall: {}'.format(recall))
print('F1 score: {}'.format(f1))
print('Yes ratio: {}'.format(yes_ratio))
def recorder(out, pred_list):
NEG_WORDS = ["No", "not", "no", "NO"]
for line in out:
line = line.replace('.', '')
line = line.replace(',', '')
words = line.split(' ')
if any(word in NEG_WORDS for word in words) or any(word.endswith("n't") for word in words):
pred_list.append(0)
else:
pred_list.append(1)
return pred_list
def main():
args = parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_id)
args.cfg_path = MODEL_EVAL_CONFIG_PATH[args.model]
args.pope_path = POPE_PATH[args.pope_type]
cfg = Config(args)
setup_seeds(cfg)
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
# ========================================
# Model Initialization
# ========================================
print('Initializing Model')
model_config = cfg.model_cfg
model_config.device_8bit = args.gpu_id
model_cls = registry.get_model_class(model_config.arch)
model = model_cls.from_config(model_config).to(device)
model.eval()
vis_processors, txt_processors = load_preprocess(cfg.get_config().preprocess)
# vis_processors.do_normalize = False
print(vis_processors["eval"].transform)
print("Done!")
# load pope data
pope_dataset = POPEDataSet(
pope_path=args.pope_path,
data_path=args.data_path,
trans=vis_processors["eval"]
)
pope_loader = torch.utils.data.DataLoader(
pope_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers,
drop_last=False
)
print ("load data finished")
print("Start eval...")
pred_list, pred_list_s, label_list = [], [], []
for batch_id, data in tqdm(enumerate(pope_loader), total=len(pope_loader)):
image = data["image"]
qu = data["query"]
label = data["label"]
label_list = label_list + list(label)
template = INSTRUCTION_TEMPLATE[args.model]
qu = [template.replace("<question>", q) for q in qu]
image = image.to(device)
label = torch.Tensor(label).to(device)
with torch.inference_mode():
with torch.no_grad():
out = model.generate(
{"image": image, "prompt":qu},
use_nucleus_sampling=args.sample,
num_beams=args.beam,
max_new_tokens=10,
output_attentions=True,
opera_decoding=True,
scale_factor=args.scale_factor,
threshold=args.threshold,
num_attn_candidates=args.num_attn_candidates,
penalty_weights=args.penalty_weights,
)
pred_list = recorder(out, pred_list)
for line in out:
print(line)
print("[{}, {}]===============================================".format(args.scale_factor, args.num_attn_candidates))
if len(pred_list) != 0:
print_acc(pred_list, label_list)
if len(pred_list_s) != 0:
print_acc(pred_list_s, label_list)
if __name__ == "__main__":
main()
|