File size: 10,364 Bytes
bc85824 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import base64
import requests
from PIL import Image
from io import BytesIO
import argparse
import os
import random
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from tqdm import tqdm
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from torchvision.utils import save_image
from pope_loader import POPEDataSet
from minigpt4.common.dist_utils import get_rank
from minigpt4.models import load_preprocess
from minigpt4.common.config import Config
from minigpt4.common.dist_utils import get_rank
from minigpt4.common.registry import registry
# imports modules for registration
from minigpt4.datasets.builders import *
from minigpt4.models import *
from minigpt4.processors import *
from minigpt4.runners import *
from minigpt4.tasks import *
# from PIL import Image
from torchvision.utils import save_image
import matplotlib.pyplot as plt
import matplotlib as mpl
import seaborn
import json
MODEL_EVAL_CONFIG_PATH = {
"minigpt4": "eval_configs/minigpt4_eval.yaml",
"instructblip": "eval_configs/instructblip_eval.yaml",
"lrv_instruct": "eval_configs/lrv_instruct_eval.yaml",
"shikra": "eval_configs/shikra_eval.yaml",
"llava-1.5": "eval_configs/llava-1.5_eval.yaml",
}
INSTRUCTION_TEMPLATE = {
"minigpt4": "###Human: <Img><ImageHere></Img> <question> ###Assistant:",
"instructblip": "<ImageHere><question>",
"lrv_instruct": "###Human: <Img><ImageHere></Img> <question> ###Assistant:",
"shikra": "USER: <im_start><ImageHere><im_end> <question> ASSISTANT:",
"llava-1.5": "USER: <ImageHere> <question> ASSISTANT:"
}
GPT_JUDGE_PROMPT = '''
You are required to score the performance of two AI assistants in describing a given image. You should pay extra attention to the hallucination, which refers to the part of descriptions that are inconsistent with the image content, such as claiming the existence of something not present in the image or describing incorrectly in terms of the counts, positions, or colors of objects in the image. Please rate the responses of the assistants on a scale of 1 to 10, where a higher score indicates better performance, according to the following criteria:
1: Accuracy: whether the response is accurate with respect to the image content. Responses with fewer hallucinationsshould be given higher scores.
2: Detailedness: whether the response is rich in necessary details. Note that hallucinated descriptions should not countas necessary details.
Please output the scores for each criterion, containing only two values indicating the scores for Assistant 1 and 2, respectively. The two scores are separated by a space. Following the scores, please provide an explanation of your evaluation, avoiding any potential bias and ensuring that the order in which the responses were presented does not affect your judgment.
[Assistant 1]
{}
[End of Assistant 1]
[Assistant 2]
{}
[End of Assistant 2]
Output format:
Accuracy: <Scores of the two answers>
Reason:
Detailedness: <Scores of the two answers>
Reason:
'''
# OpenAI API Key
API_KEY = "YOUR_API_KEY"
def setup_seeds(config):
seed = config.run_cfg.seed + get_rank()
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
def call_api(prompt, image_path):
# Function to encode the image
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
# Getting the base64 string
base64_image = encode_image(image_path)
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {API_KEY}"
}
payload = {
"model": "gpt-4-vision-preview",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": prompt
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
]
}
],
"max_tokens": 300
}
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
print(response.json().keys())
return response.json()
def get_gpt4v_answer(prompt, image_path):
while 1:
try:
res = call_api(prompt, image_path)
if "choices" in res.keys():
return res["choices"][0]["message"]["content"]
else:
assert False
except Exception as e:
print("retry")
# pass
# return call_api(prompt, image_path)
parser = argparse.ArgumentParser(description="POPE-Adv evaluation on LVLMs.")
parser.add_argument("--model", type=str, help="model")
parser.add_argument("--gpu-id", type=int, help="specify the gpu to load the model.")
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
parser.add_argument("--data_path", type=str, default="COCO_2014/val2014/", help="data path")
parser.add_argument("--batch_size", type=int, help="batch size")
parser.add_argument("--num_workers", type=int, default=2, help="num workers")
parser.add_argument("--scale_factor", type=float, default=50)
parser.add_argument("--threshold", type=int, default=15)
parser.add_argument("--num_attn_candidates", type=int, default=5)
parser.add_argument("--penalty_weights", type=float, default=1.0)
args = parser.parse_known_args()[0]
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_id)
args.cfg_path = MODEL_EVAL_CONFIG_PATH[args.model]
cfg = Config(args)
setup_seeds(cfg)
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
# ========================================
# Model Initialization
# ========================================
print('Initializing Model')
model_config = cfg.model_cfg
model_config.device_8bit = args.gpu_id
model_cls = registry.get_model_class(model_config.arch)
model = model_cls.from_config(model_config).to(device)
model.eval()
processor_cfg = cfg.get_config().preprocess
processor_cfg.vis_processor.eval.do_normalize = False
vis_processors, txt_processors = load_preprocess(processor_cfg)
print(vis_processors["eval"].transform)
print("Done!")
mean = (0.48145466, 0.4578275, 0.40821073)
std = (0.26862954, 0.26130258, 0.27577711)
norm = transforms.Normalize(mean, std)
img_files = os.listdir(args.data_path)
random.shuffle(img_files)
base_path = "log/gpt4v-eval"
if not os.path.exists(base_path + f"/{args.model}"):
os.mkdir(base_path + f"/{args.model}")
gpt_answer_records = {}
assistant_answer_records = {}
avg_hal_score_1 = 0
avg_hal_score_2 = 0
avg_det_score_1 = 0
avg_det_score_2 = 0
num_count = 0
for idx in range(50):
img = img_files[idx]
image_path = args.data_path + img
raw_image = Image.open(image_path)
raw_image = raw_image.convert("RGB")
image = vis_processors["eval"](raw_image).unsqueeze(0)
image = image.to(device)
qu = "Please describe this image in detail."
template = INSTRUCTION_TEMPLATE[args.model]
qu = template.replace("<question>", qu)
assistant_answer_records[str(img)] = {}
with torch.inference_mode():
with torch.no_grad():
out = model.generate(
{"image": norm(image), "prompt":qu},
use_nucleus_sampling=False,
num_beams=5,
max_new_tokens=512,
)
model_response_1 = out[0]
assistant_answer_records[str(img)]["assistant_1"] = model_response_1
print("Beam-5 output:")
print(model_response_1)
with torch.inference_mode():
with torch.no_grad():
out = model.generate(
{"image": norm(image), "prompt":qu},
use_nucleus_sampling=False,
num_beams=5,
max_new_tokens=512,
output_attentions=True,
opera_decoding=True,
scale_factor=args.scale_factor,
threshold=args.threshold,
num_attn_candidates=args.num_attn_candidates,
penalty_weights=args.penalty_weights,
)
model_response_2 = out[0]
assistant_answer_records[str(img)]["assistant_2"] = model_response_2
print("OPERA output:")
print(model_response_2)
# gpt-4v eval
prompt = GPT_JUDGE_PROMPT.format(model_response_1, model_response_2)
gpt_answer = get_gpt4v_answer(prompt, image_path)
print(gpt_answer)
gpt_answer_records[str(img)] = gpt_answer
print(gpt_answer.split("Accuracy: ")[-1].split("\n")[0].split(" "))
print(len(gpt_answer.split("Accuracy: ")[-1].split("\n")[0].split(" ")))
try:
hal_score_1, hal_score_2 = gpt_answer.split("Accuracy: ")[-1].split("\n")[0].split(" ")
det_score_1, det_score_2 = gpt_answer.split("Detailedness: ")[-1].split("\n")[0].split(" ")
except:
continue
avg_hal_score_1 += int(hal_score_1)
avg_hal_score_2 += int(hal_score_2)
avg_det_score_1 += int(det_score_1)
avg_det_score_2 += int(det_score_2)
num_count += 1
print("=========================================")
# dump metric file
with open(os.path.join(base_path + f"/{args.model}", 'answers.json'), "w") as f:
json.dump(assistant_answer_records, f)
# dump metric file
with open(os.path.join(base_path + f"/{args.model}", 'records.json'), "w") as f:
json.dump(gpt_answer_records, f)
avg_score = float(avg_hal_score_1) / num_count
avg_score = float(avg_hal_score_2) / num_count
avg_score = float(avg_det_score_1) / num_count
avg_score = float(avg_det_score_2) / num_count
print(f"The avg hal score for Assistant 1 and Assistent 2: {avg_hal_score_1}; {avg_hal_score_2}")
print(f"The avg det score for Assistant 1 and Assistent 2: {avg_det_score_1}; {avg_det_score_2}") |