File size: 13,171 Bytes
4a2500d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dee21e3
4a2500d
 
 
 
 
925c814
7ecd3fc
4a2500d
56d5bbe
 
 
 
 
 
 
 
 
 
4a2500d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e76fcaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8840d0
 
4a2500d
 
 
 
 
 
 
 
 
2a4a91e
4a2500d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e76fcaf
 
 
4a2500d
 
 
 
 
e76fcaf
 
 
 
 
 
 
4a2500d
 
 
 
f5068f7
4a2500d
 
 
f5068f7
4a2500d
f5068f7
e76fcaf
4a2500d
e76fcaf
 
 
 
 
 
 
 
 
 
 
 
 
4a2500d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
925c814
4a2500d
 
 
 
 
 
 
 
 
 
e76fcaf
4a2500d
 
 
 
 
be44dff
4a2500d
e76fcaf
 
 
 
 
 
 
2de91e5
 
 
4a2500d
2de91e5
 
 
 
 
 
 
 
 
4a2500d
 
 
 
 
e76fcaf
 
4a2500d
 
 
 
 
 
 
 
 
 
e76fcaf
 
 
 
 
 
 
 
 
 
 
4a2500d
2a4a91e
4a2500d
 
56d5bbe
4a2500d
 
 
 
 
 
 
 
 
 
2a4a91e
4a2500d
 
6c3a5d9
e76fcaf
4a2500d
 
 
 
a7f8c35
4a2500d
 
 
 
74ea2c8
4a2500d
74ea2c8
4a2500d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2de91e5
 
a7f8c35
4a2500d
 
 
 
 
 
 
 
 
 
 
e76fcaf
4a2500d
664a77c
a7f8c35
4a2500d
 
 
 
 
2de91e5
a7f8c35
4a2500d
4029c04
a7f8c35
4a2500d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
#!/usr/bin/env python

import os
import random

import gradio as gr
import numpy as np
import PIL.Image
import torch
import torchvision.transforms.functional as TF

from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
from controlnet_aux import PidiNetDetector, HEDdetector
from diffusers.utils import load_image
from huggingface_hub import HfApi
from pathlib import Path
from PIL import Image, ImageOps
import torch
import numpy as np
import cv2
import os
import random
import spaces
from gradio_imageslider import ImageSlider

js_func = """
function refresh() {
    const url = new URL(window.location);

    if (url.searchParams.get('__theme') !== 'dark') {
        url.searchParams.set('__theme', 'dark');
        window.location.href = url.href;
    }
}
"""
def nms(x, t, s):
    x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)

    f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
    f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
    f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
    f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)

    y = np.zeros_like(x)

    for f in [f1, f2, f3, f4]:
        np.putmask(y, cv2.dilate(x, kernel=f) == x, x)

    z = np.zeros_like(y, dtype=np.uint8)
    z[y > t] = 255
    return z

def HWC3(x):
    assert x.dtype == np.uint8
    if x.ndim == 2:
        x = x[:, :, None]
    assert x.ndim == 3
    H, W, C = x.shape
    assert C == 1 or C == 3 or C == 4
    if C == 3:
        return x
    if C == 1:
        return np.concatenate([x, x, x], axis=2)
    if C == 4:
        color = x[:, :, 0:3].astype(np.float32)
        alpha = x[:, :, 3:4].astype(np.float32) / 255.0
        y = color * alpha + 255.0 * (1.0 - alpha)
        y = y.clip(0, 255).astype(np.uint8)
        return y

DESCRIPTION = '''# ⚡️Flash⚡️ Scribble SDXL 🖋️🌄
super fast sketch to image with SDXL Flash, using [@xinsir](https://huggingface.co/xinsir) [scribble sdxl controlnet](https://huggingface.co/xinsir/controlnet-scribble-sdxl-1.0) and [sdxl flash](https://huggingface.co/sd-community/sdxl-flash)
'''

if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"

style_list = [
    {
        "name": "(No style)",
        "prompt": "{prompt}",
        "negative_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
    },
    {
        "name": "Cinematic",
        "prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
        "negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
    },
    {
        "name": "3D Model",
        "prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
        "negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
    },
    {
        "name": "Anime",
        "prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime,  highly detailed",
        "negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
    },
    {
        "name": "Digital Art",
        "prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
        "negative_prompt": "photo, photorealistic, realism, ugly",
    },
    {
        "name": "Photographic",
        "prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
        "negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
    },
    {
        "name": "Pixel art",
        "prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
        "negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
    },
    {
        "name": "Fantasy art",
        "prompt": "ethereal fantasy concept art of  {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
        "negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
    },
    {
        "name": "Neonpunk",
        "prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
        "negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
    },
    {
        "name": "Manga",
        "prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style",
        "negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
    },
]

styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "(No style)"


def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
    p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    return p.replace("{prompt}", positive), n + negative


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# eulera_scheduler = EulerAncestralDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler")


controlnet = ControlNetModel.from_pretrained(
    "xinsir/controlnet-scribble-sdxl-1.0",
    torch_dtype=torch.float16
)

controlnet_canny = ControlNetModel.from_pretrained(
    "xinsir/controlnet-canny-sdxl-1.0",
    torch_dtype=torch.float16
)



# when test with other base model, you need to change the vae also.
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)

pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
    "sd-community/sdxl-flash",
    controlnet=controlnet,
    vae=vae,
    torch_dtype=torch.float16,
    # scheduler=eulera_scheduler,
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)

pipe.to(device)

pipe_canny = StableDiffusionXLControlNetPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    controlnet=controlnet_canny,
    vae=vae,
    safety_checker=None,
    torch_dtype=torch.float16,
    # scheduler=eulera_scheduler,
)

pipe_canny.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_canny.scheduler.config)

pipe_canny.to(device)
# Load model.

MAX_SEED = np.iinfo(np.int32).max
processor = HEDdetector.from_pretrained('lllyasviel/Annotators')
def nms(x, t, s):
    x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)

    f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
    f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
    f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
    f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)

    y = np.zeros_like(x)

    for f in [f1, f2, f3, f4]:
        np.putmask(y, cv2.dilate(x, kernel=f) == x, x)

    z = np.zeros_like(y, dtype=np.uint8)
    z[y > t] = 255
    return z

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

@spaces.GPU
def run(
    image: PIL.Image.Image,
    prompt: str,
    negative_prompt: str,
    style_name: str = DEFAULT_STYLE_NAME,
    num_steps: int = 25,
    guidance_scale: float = 5,
    controlnet_conditioning_scale: float = 1.0,
    seed: int = 0,
    use_hed: bool = False,
    use_canny: bool = False,
    progress=gr.Progress(track_tqdm=True),
) -> PIL.Image.Image:
    width, height  = image['composite'].size
    ratio = np.sqrt(1024. * 1024. / (width * height))
    new_width, new_height = int(width * ratio), int(height * ratio)
    image = image['composite'].resize((new_width, new_height))
    
    if use_canny:
        controlnet_img = np.array(image)
        controlnet_img = cv2.Canny(controlnet_img, 100, 200)
        controlnet_img = HWC3(controlnet_img)
        image = Image.fromarray(controlnet_img)
    
    elif not use_hed:
          controlnet_img = image
    else:
        controlnet_img = processor(image, scribble=False)
      # following is some processing to simulate human sketch draw, different threshold can generate different width of lines
        controlnet_img = np.array(controlnet_img)
        controlnet_img = nms(controlnet_img, 127, 3)
        controlnet_img = cv2.GaussianBlur(controlnet_img, (0, 0), 3)

        # higher threshold, thiner line
        random_val = int(round(random.uniform(0.01, 0.10), 2) * 255)
        controlnet_img[controlnet_img > random_val] = 255
        controlnet_img[controlnet_img < 255] = 0
        image = Image.fromarray(controlnet_img)
    
    
    prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)

    generator = torch.Generator(device=device).manual_seed(seed)
    if use_canny:
        out = pipe_canny(
        prompt=prompt,
        negative_prompt=negative_prompt,
        image=image,
        num_inference_steps=num_steps,
        generator=generator,
        controlnet_conditioning_scale=controlnet_conditioning_scale,
        guidance_scale=guidance_scale,
        width=new_width,
        height=new_height,
    ).images[0]
    else:
        out = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        image=image,
        num_inference_steps=num_steps,
        generator=generator,
        controlnet_conditioning_scale=controlnet_conditioning_scale,
        guidance_scale=guidance_scale,
        width=new_width,
        height=new_height,).images[0]

    return (controlnet_img, out)


with gr.Blocks(css="style.css", js=js_func) as demo:
    gr.Markdown(DESCRIPTION, elem_id="description")
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
    )

    with gr.Row():
        with gr.Column():
            with gr.Group():
                image = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512))
                prompt = gr.Textbox(label="Prompt")
                style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
                use_hed = gr.Checkbox(label="use HED detector", value=False, info="check this box if you upload an image and want to turn it to a sketch")
                use_canny = gr.Checkbox(label="use Canny", value=False, info="check this to use ControlNet canny instead of scribble")
                run_button = gr.Button("Run")
            with gr.Accordion("Advanced options", open=False):
                negative_prompt = gr.Textbox(
                    label="Negative prompt",
                    value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
                )
                num_steps = gr.Slider(
                    label="Number of steps",
                    minimum=1,
                    maximum=20,
                    step=1,
                    value=10,
                )
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.1,
                    maximum=10.0,
                    step=0.1,
                    value=5,
                )
                controlnet_conditioning_scale = gr.Slider(
                    label="controlnet conditioning scale",
                    minimum=0.5,
                    maximum=5.0,
                    step=0.1,
                    value=0.9,
                )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
               
        with gr.Column():
            with gr.Group():
                image_slider = ImageSlider(position=0.5)


    inputs = [
        image,
        prompt,
        negative_prompt,
        style,
        num_steps,
        guidance_scale,
        controlnet_conditioning_scale,
        seed,
        use_hed,
        use_canny
    ]
    outputs = [image_slider]
    run_button.click(
        fn=randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
        api_name=False,
    ).then(lambda x: None, inputs=None, outputs=image_slider).then(
        fn=run, inputs=inputs, outputs=outputs
    )
    
    

demo.queue().launch()