Spaces:
Sleeping
Sleeping
File size: 1,164 Bytes
e61be34 83faf72 b58ae42 e61be34 83faf72 b58ae42 83faf72 9ddfe75 a6e2c60 9ddfe75 a6e2c60 9ddfe75 a6e2c60 9ddfe75 a6e2c60 a2dfd72 a6e2c60 9ddfe75 a6e2c60 9ddfe75 a6e2c60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
from transformers import AutoModelForImageClassification, ViTImageProcessor
import gradio as gr
from PIL import Image
import torch
model = AutoModelForImageClassification.from_pretrained("KFrimps/oxford-pets-vit-from-scratch")
processor = ViTImageProcessor.from_pretrained("KFrimps/oxford-pets-vit-from-scratch")
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
id2label = model.config.id2label
def predict(image):
"""Predicts the class of the input image using the fine-tuned student model."""
# Convert the Gradio image to a PIL Image
image = Image.fromarray(image)
# Preprocess the image
inputs = processor(image, return_tensors="pt").to(device)
# Make prediction
with torch.no_grad():
outputs = model(**inputs)
predicted_class_idx = torch.argmax(outputs.logits, dim=1).item()
# Get predicted class label
predicted_class = id2label[predicted_class_idx]
return predicted_class
iface = gr.Interface(
fn=predict,
inputs=gr.Image(type="numpy"),
outputs="text",
title="Pets Image Classification",
description="Upload an image of a cat or dog to get its breed prediction.",
).launch() |