File size: 5,547 Bytes
1729e78
3de0981
 
 
1729e78
 
fe94832
 
3de0981
fe94832
3de0981
fe94832
3de0981
fe94832
50795b4
1729e78
fe94832
 
 
3de0981
 
 
1729e78
fe94832
 
3de0981
fe94832
3de0981
1729e78
fe94832
 
 
 
 
3de0981
fe94832
f3041c4
fe94832
 
 
f3041c4
fe94832
f3041c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1729e78
fe94832
 
 
 
 
 
 
f3041c4
 
 
 
fe94832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
223d987
fe94832
 
f3041c4
 
 
223d987
 
fe94832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1729e78
 
fe94832
f3041c4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import gradio as gr
from keras.models import load_model
from PIL import Image, ImageOps
import numpy as np
from huggingface_hub import InferenceClient

# Load the Keras model
model = load_model("keras_model.h5", compile=False)

# Load class labels from a file
with open("labels.txt", "r") as file:
    class_names = [line.strip() for line in file]

# Initialize the Hugging Face Inference Client
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

def classify_image(img):
    # Resize and normalize the image for model prediction
    image = ImageOps.fit(img, (224, 224), Image.Resampling.LANCZOS)
    image_array = np.asarray(image)
    normalized_image_array = (image_array.astype(np.float32) / 127.5) - 1
    data = normalized_image_array.reshape((1, 224, 224, 3))

    # Predict the emotion using the model
    prediction = model.predict(data)
    index = np.argmax(prediction)
    class_name = class_names[index]
    confidence_score = prediction[0][index]

    # Return the detected emotion and confidence score
    return {
        "Detected Emotion": class_name,
        "Confidence Score": f"{confidence_score:.2f}"
    }

def respond(
    messages,
    system_message,
    max_tokens,
    temperature,
    top_p
):
    # Ensure messages are correctly formatted
    formatted_messages = []
    for message in messages:
        if message['content'] is None:
            message['content'] = ''  # Set to empty string if None
        formatted_messages.append(message)

    # Add system message at the beginning
    formatted_messages.insert(0, {"role": "system", "content": system_message})

    # Proceed with chat completion
    try:
        response = ""
        for message in client.chat_completion(
            model_id='HuggingFaceH4/zephyr-7b-beta',
            messages=formatted_messages,
            max_tokens=max_tokens,
            temperature=temperature,
            top_p=top_p,
            stream=True
        ):
            token = message.choices[0].delta.content
            response += token
        return response
    except Exception as e:
        print(f"Error: {e}")
        return "Sorry, there was an error processing your request."

def emotion_and_chat(img, system_message, max_tokens, temperature, top_p):
    # Classify the image to detect emotion
    emotion_result = classify_image(img)
    detected_emotion = emotion_result["Detected Emotion"]

    # Start chatbot conversation based on the detected emotion
    initial_message = f"I detected that you're feeling {detected_emotion}. Let's talk about it."
    chat_history = [{"role": "user", "content": initial_message}]
    chat_response = respond(chat_history, system_message, max_tokens, temperature, top_p)

    return chat_response

# Define custom CSS for styling
custom_css = """
body {
    font-family: Arial, sans-serif;
    background-color: #000;
    color: #f4f4f4;
}
.gradio-container {
    border-radius: 10px;
    padding: 20px;
    background: linear-gradient(135deg, #ff0000, #008000);
    box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2);
}
.gradio-container h1 {
    font-family: Arial, sans-serif;
    font-size: 2.5em;
    text-align: center;
    color: #fff;
}
.gradio-container p {
    font-size: 1em;
    text-align: center;
    color: #c0c0c0;
}
.gradio-button {
    background-color: #ff0000;
    border: none;
    color: #fff;
    padding: 10px 20px;
    font-size: 1em;
    cursor: pointer;
    border-radius: 5px;
    transition: background-color 0.2s ease;
}
.gradio-button:hover {
    background-color: #ff4d4d;
}
#output-container {
    border-radius: 10px;
    background-color: #008000;
    padding: 20px;
    color: #fff;
}
#output-container h3 {
    font-family: Arial, sans-serif;
    font-size: 1.5em;
    color: #fff;
}
.gr-examples {
    text-align: center;
}
.gr-example-img {
    width: 100px;
    border-radius: 5px;
    margin: 5px;
    box-shadow: 0 4px 10px rgba(0, 0, 0, 0.2);
}
"""

# Define example images from URLs
examples = [
    "https://firebasestorage.googleapis.com/v0/b/hisia-4b65b.appspot.com/o/a-captivating-ukiyo-e-inspired-poster-featuring-a--wTg7L-f2Tfiy6K8w6aWnKA-KbGU9GSKSDGBbbxrCO65Mg.jpeg?alt=media&token=64590de9-e265-44ac-a766-aeecd455ed5d",
    "https://firebasestorage.googleapis.com/v0/b/hisia-4b65b.appspot.com/o/poster-ai-themed-kenyan-female-silhoutte-written-l-PMIXpNWGQ8KaNNetQRVJuQ-B1TteyL-S5OTPZFXvfGybg.jpeg?alt=media&token=fc10f96d-403e-4f75-bd9c-810e0da36867",
    "https://firebasestorage.googleapis.com/v0/b/hisia-4b65b.appspot.com/o/poster-ai-themed-kenyan-male-silhoutte-written-log-z3fqBD5bQOOj6uqGd_iXLQ-4aBfNy0ZTgmLlTsZh1dzIA.jpeg?alt=media&token=f218f160-d38e-482f-97a9-5442c2f251a7"
]

# Gradio Interface
interface = gr.Interface(
    fn=emotion_and_chat,
    inputs=[
        gr.Image(type="pil", label="Upload an Image"),
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
    ],
    outputs=gr.Chatbot(label="Chat with the AI"),
    examples=examples,
    title="HISIA: Emotion Detector and Chatbot",
    description="Upload an image, and our AI will detect the emotion expressed in it and start a conversation with you.",
    allow_flagging="never",
    css=custom_css,
)

# Launch the Gradio interface
if __name__ == "__main__":
    interface.launch()