File size: 13,149 Bytes
3783d54
 
 
 
 
 
 
 
 
852f11e
3783d54
 
 
 
 
d5d8a26
3783d54
 
 
45f2d0c
3783d54
 
 
35fac14
3783d54
 
 
 
 
 
 
 
d5d8a26
 
 
3783d54
d5d8a26
3783d54
c7b0000
3783d54
c7b0000
3783d54
 
 
 
 
 
 
 
 
 
 
 
 
d5d8a26
852f11e
 
d5d8a26
3783d54
852f11e
 
 
 
 
 
 
3783d54
 
 
 
 
 
 
 
 
 
 
852f11e
3783d54
 
852f11e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3783d54
 
 
 
 
b612bcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7b0000
b612bcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a1c257
 
 
 
 
c7b0000
 
 
 
 
 
3a1c257
 
 
 
 
 
c7b0000
 
3a1c257
 
 
 
 
 
 
c7b0000
3a1c257
c7b0000
 
3a1c257
 
 
 
 
 
 
b612bcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3783d54
 
 
 
 
 
 
 
 
 
 
 
 
852f11e
3783d54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45f2d0c
 
 
 
 
3783d54
 
 
 
 
 
 
 
 
 
852f11e
 
3783d54
 
 
852f11e
3783d54
 
 
 
 
852f11e
 
3783d54
852f11e
 
 
3783d54
852f11e
 
3783d54
852f11e
 
 
 
 
 
 
 
 
 
 
 
3783d54
 
 
852f11e
3783d54
 
45f2d0c
852f11e
45f2d0c
 
852f11e
3783d54
 
 
 
 
45f2d0c
3783d54
 
852f11e
 
 
 
 
 
 
 
 
3783d54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import transforms
from datasets import load_dataset
from huggingface_hub import Repository
from huggingface_hub import HfApi, HfFolder, Repository, create_repo
import os
import pandas as pd
import gradio as gr
from PIL import Image
import numpy as np
from small_256_model import UNet as small_UNet
from big_1024_model import UNet as big_UNet
from CLIP import load as load_clip

# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
big = True if device == torch.device('cpu') else False

# Parameters
IMG_SIZE = 1024 if big else 256
BATCH_SIZE = 1 if big else 4
EPOCHS = 12
LR = 0.0002
dataset_id = "K00B404/pix2pix_flux_set"
model_repo_id = "K00B404/pix2pix_flux"

# Global model variable
global_model = None

# clip
clip_model,clip_tokenizer = load_clip()

def load_model():
    """Load the models at startup"""
    global global_model
    weights_name = 'big_model_weights.pth' if big else 'small_model_weights.pth'
    try:
        checkpoint = torch.load(weights_name, map_location=device)
        model = big_UNet() if checkpoint['model_config']['big'] else small_UNet()
        model.load_state_dict(checkpoint['model_state_dict'])
        model.to(device)
        model.eval()
        global_model = model
        print("Model loaded successfully!")
        return model
    except Exception as e:
        print(f"Error loading model: {e}")
        model = big_UNet().to(device) if big else small_UNet().to(device)
        global_model = model
        return model

    
import os
import pandas as pd

class Pix2PixDataset(torch.utils.data.Dataset):
    def __init__(self, ds, transform, clip_tokenizer, csv_path='combined_data.csv'):
        if not os.path.exists(csv_path):
            os.system('wget https://huggingface.co/datasets/K00B404/pix2pix_flux_set/resolve/main/combined_data.csv')

        self.data = pd.read_csv(csv_path)
        self.clip_tokenizer = clip_tokenizer
        
        self.originals = [x for x in ds["train"] if x['label'] == 0]
        self.targets = [x for x in ds["train"] if x['label'] == 1]
        assert len(self.originals) == len(self.targets)
        print(f"Number of original images: {len(self.originals)}")
        print(f"Number of target images: {len(self.targets)}")
        self.transform = transform

    def __len__(self):
        return len(self.originals)

    def __getitem__(self, idx):
        # Get original and target images
        original_img = self.originals[idx]['image']
        target_img = self.targets[idx]['image']
        
        # Convert PIL images
        original = original_img.convert('RGB')
        target = target_img.convert('RGB')
        
        # Extract the filename from the original image's path (assuming it has a 'filename' field or path)
        original_img_path = self.originals[idx]['image'].filename  # Assuming it has this attribute
        original_img_filename = os.path.basename(original_img_path)
        
        # Match the image filename with the `image_path` column in the CSV
        matched_row = self.data[self.data['image_path'].str.contains(original_img_filename)]
        
        if matched_row.empty:
            raise ValueError(f"No matching entry found in the CSV for image {original_img_filename}")

        # Get the prompts from the matched row
        original_prompt = matched_row['original_prompt'].values[0]
        enhanced_prompt = matched_row['enhanced_prompt'].values[0]
        
        # Tokenize the prompts using CLIP tokenizer
        original_tokens = self.clip_tokenizer(original_prompt, return_tensors="pt", padding=True, truncation=True, max_length=77)
        enhanced_tokens = self.clip_tokenizer(enhanced_prompt, return_tensors="pt", padding=True, truncation=True, max_length=77)
        
        # Return transformed images and tokenized prompts
        return self.transform(original), self.transform(target), original_tokens, enhanced_tokens


# Dataset class remains the same
class Pix2PixDataset_old(torch.utils.data.Dataset):
    def __init__(self, ds, transform, csv_path='combined_data.csv'):
        if not os.path.exists(csv_path):
            os.system('wget https://huggingface.co/datasets/K00B404/pix2pix_flux_set/resolve/main/combined_data.csv')

        self.data = pd.read_csv(csv_path)
        self.clip_tokenizer = clip_tokenizer
        
        self.originals = [x for x in ds["train"] if x['label'] == 0]
        self.targets = [x for x in ds["train"] if x['label'] == 1]
        assert len(self.originals) == len(self.targets)
        print(f"Number of original images: {len(self.originals)}")
        print(f"Number of target images: {len(self.targets)}")
        self.transform = transform

    def __len__(self):
        return len(self.originals)

    def __getitem__(self, idx):
        original_img = self.originals[idx]['image']
        # TODO: get original_img file name and match with image_path in self.data....then tokenize the prompts with clip_tokenizer
        target_img = self.targets[idx]['image']
        original = original_img.convert('RGB')
        target = target_img.convert('RGB')
        return self.transform(original), self.transform(target)

class UNetWrapper:
    def __init__(self, unet_model, repo_id):
        self.model = unet_model
        self.repo_id = repo_id
        self.token = os.getenv('NEW_TOKEN') # Make sure this environment variable is set
        self.api = HfApi(token=os.getenv('NEW_TOKEN'))

    def push_to_hub(self):
        try:
            # Save model state and configuration
            save_dict = {
                'model_state_dict': self.model.state_dict(),
                'model_config': {
                    'big': isinstance(self.model, big_UNet),
                    'img_size': 1024 if isinstance(self.model, big_UNet) else 256
                },
                'model_architecture': str(self.model)
            }
            
            # Save model locally
            pth_name = 'big_model_weights.pth' if big else  'small_model_weights.pth'
            torch.save(save_dict, pth_name)
            
            # Create repo if it doesn't exist
            try:
                create_repo(
                    repo_id=self.repo_id, 
                    token=self.token,
                    exist_ok=True
                )
            except Exception as e:
                print(f"Repository creation note: {e}")
            
            # Upload the model file
            self.api.upload_file(
                path_or_fileobj=pth_name,
                path_in_repo=pth_name,
                repo_id=self.repo_id,
                token=self.token,
                repo_type="model"
            )
            
            # Create and upload model card
            model_card = f"""---
tags:
- unet
- pix2pix
- pytorch
library_name: pytorch
license: wtfpl
datasets:
- K00B404/pix2pix_flux_set
language:
- en
pipeline_tag: image-to-image
---

# Pix2Pix UNet Model

## Model Description
Custom UNet model for Pix2Pix image translation.
- **Image Size:** 1024
- **Model Type:** Big (1024)

## Usage

```python
import torch
from small_256_model import UNet as small_UNet
from big_1024_model import UNet as big_UNet
big = True
# Load the model
name='big_model_weights.pth' if big else 'small_model_weights.pth'
checkpoint = torch.load(name)
model = big_UNet() if checkpoint['model_config']['big'] else small_UNet()
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()

Model Architecture

{str(self.model)} """
            # Save and upload README
            with open("README.md", "w") as f:
                f.write(model_card)
            
            self.api.upload_file(
                path_or_fileobj="README.md",
                path_in_repo="README.md",
                repo_id=self.repo_id,
                token=self.token,
                repo_type="model"
            )
            
            # Clean up local files
            os.remove(pth_name)
            os.remove("README.md")
            
            print(f"Model successfully uploaded to {self.repo_id}")
            
        except Exception as e:
            print(f"Error uploading model: {e}")
            

def prepare_input(image, device='cpu'):
    """Prepare image for inference"""
    transform = transforms.Compose([
        transforms.Resize((IMG_SIZE, IMG_SIZE)),
        transforms.ToTensor(),
    ])
    
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)
    input_tensor = transform(image).unsqueeze(0).to(device)
    return input_tensor

def run_inference(image, prompt):
    """Run inference on a single image"""
    global global_model
    if global_model is None:
        return "Error: Model not loaded"
    
    global_model.eval()
    input_tensor = prepare_input(image, device)
    
    with torch.no_grad():
        output = global_model(input_tensor)
    
    # Convert output to image
    output = output.cpu().squeeze(0).permute(1, 2, 0).numpy()
    output = ((output - output.min()) / (output.max() - output.min()) * 255).astype(np.uint8)
    return output
    
def to_hub(model):
    wrapper = UNetWrapper(model, model_repo_id)
    wrapper.push_to_hub()
    
def train_model(epochs):
    """Training function"""
    global global_model
    
    ds = load_dataset(dataset_id)
    transform = transforms.Compose([
        transforms.Resize((IMG_SIZE, IMG_SIZE)),
        transforms.ToTensor(),
    ])
    
    # Initialize the dataset and dataloader
    dataset = Pix2PixDataset(ds, transform, clip_tokenizer)
    dataloader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True)

    model = global_model
    criterion = nn.L1Loss()  # L1 loss for image reconstruction
    optimizer = optim.Adam(model.parameters(), lr=LR)
    output_text = []
    
    for epoch in range(epochs):
        model.train()
        for i, (original, target, original_prompt_tokens, enhanced_prompt_tokens) in enumerate(dataloader):
            # Move images and prompt embeddings to the appropriate device (CPU or GPU)
            original, target = original.to(device), target.to(device)
            original_prompt_tokens = original_prompt_tokens.input_ids.to(device)
            enhanced_prompt_tokens = enhanced_prompt_tokens.input_ids.to(device)
            
            optimizer.zero_grad()

            # Forward pass through the model
            output = model(target)

            # Compute image reconstruction loss
            img_loss = criterion(output, original)
            
            # Compute prompt guidance loss (L2 norm between original and enhanced prompt embeddings)
            prompt_loss = torch.norm(original_prompt_tokens - enhanced_prompt_tokens, p=2)
            
            # Combine losses
            total_loss = img_loss + 0.1 * prompt_loss  # Weight the prompt guidance loss with 0.1 to balance
            total_loss.backward()

            # Optimizer step
            optimizer.step()

            if i % 10 == 0:
                status = f"Epoch [{epoch}/{epochs}], Step [{i}/{len(dataloader)}], Loss: {total_loss.item():.8f}"
                print(status)
                output_text.append(status)
        
        # Push model to Hugging Face Hub at the end of each epoch
        to_hub(model)
        
    global_model = model  # Update the global model after training
    return model, "\n".join(output_text)

def gradio_train(epochs):
    """Gradio training interface function"""
    model, training_log = train_model(int(epochs))
    to_hub(model)
    return f"{training_log}\n\nModel trained for {epochs} epochs and pushed to {model_repo_id}"

def gradio_inference(input_image, keywords):
    """Gradio inference interface function"""
    # Generate an enhanced prompt using the chat bot
    enhanced_prompt = chat_with_bot(keywords)

    # Run inference on the input image
    output_image = run_inference(input_image, chat_with_bot(keywords))

    return input_image, output_image, keywords, enhanced_prompt
def gradio_inference(input_image):
    """Gradio inference interface function"""
    return input_image, run_inference(input_image)

# Create Gradio interface with tabs
with gr.Blocks() as app:
    gr.Markdown("# Pix2Pix Model Training and Inference")
    
    with gr.Tabs():
        with gr.TabItem("Training"):
            epochs_input = gr.Number(label="Number of Epochs")
            train_button = gr.Button("Train Model")
            output_text = gr.Textbox(label="Training Progress", lines=10)
            train_button.click(gradio_train, inputs=epochs_input, outputs=output_text)
        
        with gr.TabItem("Inference"):
            with gr.Row():
                input_image = gr.Image(label="Input Image")
                output_image = gr.Image(label="Model Output")
            infer_button = gr.Button("Run Inference")
            infer_button.click(gradio_inference, inputs=input_image, outputs=[input_image, output_image])

if __name__ == '__main__':
    # Load model at startup
    load_model()
    
    # Launch the Gradio app
    app.launch()