Spaces:
Runtime error
Runtime error
File size: 5,777 Bytes
374ecac ec8ef23 374ecac ec8ef23 374ecac ec8ef23 374ecac 7169302 374ecac 527535b 374ecac 8fd30e2 374ecac 8fd30e2 ec8ef23 374ecac ec8ef23 cc23ea5 ec8ef23 374ecac ec8ef23 374ecac 4735bd9 374ecac 4735bd9 374ecac 4735bd9 374ecac 4735bd9 374ecac 4735bd9 8613c00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import gradio as gr
from random import randint, sample
from all_models import models
import csv
import os
# Assuming you have a function to calculate ELO ratings
def init_model_scores(file_path='model_scores.csv'):
# Check if the CSV file exists, if not, create it with headers
if not os.path.isfile(csv_file_path):
with open(csv_file_path, 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(["Model Name", "Score"])
for model in models:
# make a entry for each model
writer.writerow([model, 0])
def update_elo_ratings(user_vote, csv_file_path='model_scores.csv'):
# Logic to update ELO ratings based on user vote
# Read the current scores from the CSV file
scores = {}
with open(csv_file_path, 'r') as file:
reader = csv.reader(file)
next(reader) # Skip the header row
for row in reader:
scores[row[0]] = int(row[1])
# Update the score for the selected model
if user_vote in scores:
scores[user_vote] += 1 # Increment the score
else:
scores[user_vote] = 1 # Add the model with a score of 1
# Write the updated scores back to the CSV file
with open(csv_file_path, 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(["Model Name", "Score"]) # Write the header row
for model, score in scores.items():
writer.writerow([model, score])
# Function to compare two models
def compare_models(prompt):
model1, model2 = sample(models, 2)
image1, model_name1 = gen_fn(model1, prompt)
image2, model_name2 = gen_fn(model2, prompt)
return image1, model_name1, image2, model_name2
# User voting logic
def handle_vote(user_vote):
init_model_scores()
# Assuming user_vote is a string indicating the preferred model
# Update ELO ratings based on user vote
update_elo_ratings(user_vote)
# Leaderboard display logic
def display_leaderboard():
# Logic to display leaderboard based on ELO ratings
pass
# Your existing Gradio setup code here...
def load_fn(models):
global models_load
models_load = {}
for model in models:
if model not in models_load.keys():
try:
m = gr.load(f'models/{model}')
except Exception as error:
m = gr.Interface(lambda txt: None, ['text'], ['image'])
models_load.update({model: m})
load_fn(models)
num_models = 6
default_models = models[:num_models]
def extend_choices(choices):
return choices + (num_models - len(choices)) * ['NA']
def update_imgbox(choices):
choices_plus = extend_choices(choices)
return [gr.Image(None, label = m, visible = (m != 'NA')) for m in choices_plus]
def gen_fn(model_str, prompt):
if model_str == 'NA':
return None
noise = str(randint(0, 99999999999))
return models_load[model_str](f'{prompt} {noise}')
# Modified gen_fn function to return model name
def gen_fn(model_str, prompt):
if model_str == 'NA':
return None, None
noise = str(randint(0, 99999999999))
image = models_load[model_str](f'{prompt} {noise}')
return image, model_str
with gr.Blocks() as ImageGenarationArena:
with gr.Column('model A', variant='panel', width=2, height=150) as col:
#with gr.Tab('model B'):
model_choice2 = gr.Dropdown(models, label = 'Choose model', value = models[0], filterable = False)
txt_input2 = gr.Textbox(label = 'Prompt text')
max_images = 6
num_images = gr.Slider(1, max_images, value = max_images, step = 1, label = 'Number of images')
gen_button2 = gr.Button('Generate')
stop_button2 = gr.Button('Stop', variant = 'secondary', interactive = False)
gen_button2.click(lambda s: gr.update(interactive = True), None, stop_button2)
with gr.Row():
output2 = [gr.Image(label = '') for _ in range(max_images)]
for i, o in enumerate(output2):
img_i = gr.Number(i, visible = False)
num_images.change(lambda i, n: gr.update(visible = (i < n)), [img_i, num_images], o)
gen_event2 = gen_button2.click(lambda i, n, m, t: gen_fn(m, t) if (i < n) else None, [img_i, num_images, model_choice2, txt_input2], o)
stop_button2.click(lambda s: gr.update(interactive = False), None, stop_button2, cancels = [gen_event2])
with gr.Column('model B', variant='panel', width=2, height=150) as col:
#with gr.Tab('model A'):
model_choice2 = gr.Dropdown(models, label = 'Choose model', value = models[0], filterable = False)
txt_input2 = gr.Textbox(label = 'Prompt text')
max_images = 6
num_images = gr.Slider(1, max_images, value = max_images, step = 1, label = 'Number of images')
gen_button2 = gr.Button('Generate')
stop_button2 = gr.Button('Stop', variant = 'secondary', interactive = False)
gen_button2.click(lambda s: gr.update(interactive = True), None, stop_button2)
with gr.Row():
output2 = [gr.Image(label = '') for _ in range(max_images)]
for i, o in enumerate(output2):
img_i = gr.Number(i, visible = False)
num_images.change(lambda i, n: gr.update(visible = (i < n)), [img_i, num_images], o)
gen_event2 = gen_button2.click(lambda i, n, m, t: gen_fn(m, t) if (i < n) else None, [img_i, num_images, model_choice2, txt_input2], o)
stop_button2.click(lambda s: gr.update(interactive = False), None, stop_button2, cancels = [gen_event2])
ImageGenarationArena.queue(concurrency_count = 36)
ImageGenarationArena.launch() |