File size: 10,511 Bytes
2fbcf51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
from __future__ import annotations

import ast
import csv
import inspect
import os
import subprocess
import tempfile
import threading
import warnings
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Tuple

import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import PIL
import PIL.Image

import gradio
from gradio import components, processing_utils, routes, utils
from gradio.context import Context
from gradio.documentation import document, set_documentation_group
from gradio.flagging import CSVLogger

if TYPE_CHECKING:  # Only import for type checking (to avoid circular imports).
    from gradio.components import IOComponent

CACHED_FOLDER = "gradio_cached_examples"
LOG_FILE = "log.csv"

def create_myexamples(
    examples: List[Any] | List[List[Any]] | str,
    inputs: IOComponent | List[IOComponent],
    outputs: IOComponent | List[IOComponent] | None = None,
    fn: Callable | None = None,
    cache_examples: bool = False,
    examples_per_page: int = 10,
    _api_mode: bool = False,
    label: str | None = None,
    elem_id: str | None = None,
    run_on_click: bool = False,
    preprocess: bool = True,
    postprocess: bool = True,
    batch: bool = False,):
    """Top-level synchronous function that creates Examples. Provided for backwards compatibility, i.e. so that gr.Examples(...) can be used to create the Examples component."""
    examples_obj = MyExamples(
        examples=examples,
        inputs=inputs,
        outputs=outputs,
        fn=fn,
        cache_examples=cache_examples,
        examples_per_page=examples_per_page,
        _api_mode=_api_mode,
        label=label,
        elem_id=elem_id,
        run_on_click=run_on_click,
        preprocess=preprocess,
        postprocess=postprocess,
        batch=batch,
        _initiated_directly=False,
    )
    utils.synchronize_async(examples_obj.create)
    return examples_obj

class MyExamples(gradio.helpers.Examples):
    def __init__(
            self,
            examples: List[Any] | List[List[Any]] | str,
            inputs: IOComponent | List[IOComponent],
            outputs: IOComponent | List[IOComponent] | None = None,
            fn: Callable | None = None,
            cache_examples: bool = False,
            examples_per_page: int = 10,
            _api_mode: bool = False,
            label: str | None = "Examples",
            elem_id: str | None = None,
            run_on_click: bool = False,
            preprocess: bool = True,
            postprocess: bool = True,
            batch: bool = False,
            _initiated_directly: bool = True,):

        if _initiated_directly:
            warnings.warn(
                "Please use gr.Examples(...) instead of gr.examples.Examples(...) to create the Examples.",
            )

        if cache_examples and (fn is None or outputs is None):
            raise ValueError("If caching examples, `fn` and `outputs` must be provided")

        if not isinstance(inputs, list):
            inputs = [inputs]
        if outputs and not isinstance(outputs, list):
            outputs = [outputs]

        working_directory = Path().absolute()

        if examples is None:
            raise ValueError("The parameter `examples` cannot be None")
        elif isinstance(examples, list) and (
            len(examples) == 0 or isinstance(examples[0], list)
        ):
            pass
        elif (
            isinstance(examples, list) and len(inputs) == 1
        ):  # If there is only one input component, examples can be provided as a regular list instead of a list of lists
            examples = [[e] for e in examples]
        elif isinstance(examples, str):
            if not Path(examples).exists():
                raise FileNotFoundError(
                    "Could not find examples directory: " + examples
                )
            working_directory = examples
            if not (Path(examples) / LOG_FILE).exists():
                if len(inputs) == 1:
                    examples = [[e] for e in os.listdir(examples)]
                else:
                    raise FileNotFoundError(
                        "Could not find log file (required for multiple inputs): "
                        + LOG_FILE
                    )
            else:
                with open(Path(examples) / LOG_FILE) as logs:
                    examples = list(csv.reader(logs))
                    examples = [
                        examples[i][: len(inputs)] for i in range(1, len(examples))
                    ]  # remove header and unnecessary columns

        else:
            raise ValueError(
                "The parameter `examples` must either be a string directory or a list"
                "(if there is only 1 input component) or (more generally), a nested "
                "list, where each sublist represents a set of inputs."
            )

        input_has_examples = [False] * len(inputs)
        for example in examples:
            for idx, example_for_input in enumerate(example):
                # if not (example_for_input is None):
                if True:
                    try:
                        input_has_examples[idx] = True
                    except IndexError:
                        pass  # If there are more example components than inputs, ignore. This can sometimes be intentional (e.g. loading from a log file where outputs and timestamps are also logged)

        inputs_with_examples = [
            inp for (inp, keep) in zip(inputs, input_has_examples) if keep
        ]
        non_none_examples = [
            [ex for (ex, keep) in zip(example, input_has_examples) if keep]
            for example in examples
        ]

        self.examples = examples
        self.non_none_examples = non_none_examples
        self.inputs = inputs
        self.inputs_with_examples = inputs_with_examples
        self.outputs = outputs
        self.fn = fn
        self.cache_examples = cache_examples
        self._api_mode = _api_mode
        self.preprocess = preprocess
        self.postprocess = postprocess
        self.batch = batch

        with utils.set_directory(working_directory):
            self.processed_examples = [
                [
                    component.postprocess(sample)
                    for component, sample in zip(inputs, example)
                ]
                for example in examples
            ]
        self.non_none_processed_examples = [
            [ex for (ex, keep) in zip(example, input_has_examples) if keep]
            for example in self.processed_examples
        ]
        if cache_examples:
            for example in self.examples:
                if len([ex for ex in example if ex is not None]) != len(self.inputs):
                    warnings.warn(
                        "Examples are being cached but not all input components have "
                        "example values. This may result in an exception being thrown by "
                        "your function. If you do get an error while caching examples, make "
                        "sure all of your inputs have example values for all of your examples "
                        "or you provide default values for those particular parameters in your function."
                    )
                    break

        with utils.set_directory(working_directory):
            self.dataset = components.Dataset(
                components=inputs_with_examples,
                samples=non_none_examples,
                type="index",
                label=label,
                samples_per_page=examples_per_page,
                elem_id=elem_id,
            )

        self.cached_folder = Path(CACHED_FOLDER) / str(self.dataset._id)
        self.cached_file = Path(self.cached_folder) / "log.csv"
        self.cache_examples = cache_examples
        self.run_on_click = run_on_click

from gradio import utils, processing_utils
from PIL import Image as _Image
from pathlib import Path
import numpy as np

def customized_postprocess(self, y):
    if y is None:
        return None

    if isinstance(y, dict):
        if self.tool == "sketch" and self.source in ["upload", "webcam"]:
            y, mask = y["image"], y["mask"]
            if y is None:
                return None
            elif isinstance(y, np.ndarray):
                im = processing_utils.encode_array_to_base64(y)
            elif isinstance(y, _Image.Image):
                im = processing_utils.encode_pil_to_base64(y)
            elif isinstance(y, (str, Path)):
                im = processing_utils.encode_url_or_file_to_base64(y)
            else:
                raise ValueError("Cannot process this value as an Image")
            im = self._format_image(im)

            if mask is None:
                return im
            elif isinstance(y, np.ndarray):
                mask_im = processing_utils.encode_array_to_base64(mask)
            elif isinstance(y, _Image.Image):
                mask_im = processing_utils.encode_pil_to_base64(mask)
            elif isinstance(y, (str, Path)):
                mask_im = processing_utils.encode_url_or_file_to_base64(mask)
            else:
                raise ValueError("Cannot process this value as an Image")

            return {"image": im, "mask" : mask_im,}

    elif isinstance(y, np.ndarray):
        return processing_utils.encode_array_to_base64(y)
    elif isinstance(y, _Image.Image):
        return processing_utils.encode_pil_to_base64(y)
    elif isinstance(y, (str, Path)):
        return processing_utils.encode_url_or_file_to_base64(y)
    else:
        raise ValueError("Cannot process this value as an Image")

# def customized_as_example(self, input_data=None):
#     if input_data is None:
#         return str('assets/demo/misc/noimage.jpg')
#     elif isinstance(input_data, dict):
#         im = np.array(PIL.Image.open(input_data["image"])).astype(float)
#         mask = np.array(PIL.Image.open(input_data["mask"])).astype(float)/255
#         imm = (im * (1-mask)).astype(np.uint8)
#         import time
#         ctime = int(time.time()*100)
#         impath = 'assets/demo/temp/temp_{}.png'.format(ctime)
#         PIL.Image.fromarray(imm).save(impath)
#         return str(utils.abspath(impath))
#     else:
#         return str(utils.abspath(input_data))

def customized_as_example(self, input_data=None):
    if input_data is None:
        return str('assets/demo/misc/noimage.jpg')
    else:
        return str(utils.abspath(input_data))