File size: 7,455 Bytes
4f080ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d24830e
 
 
 
 
 
 
 
4f080ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d24830e
4f080ef
d24830e
4f080ef
d24830e
4f080ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d24830e
4f080ef
8606620
4f080ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d24830e
 
4f080ef
 
 
d24830e
4f080ef
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import gradio as gr
from gradio_client import Client
from huggingface_hub import InferenceClient
import random
ss_client = Client("https://omnibus-html-image-current-tab.hf.space/")

models=[
    "google/gemma-7b",
    "google/gemma-7b-it",
    "google/gemma-2b",
    "google/gemma-2b-it",
    "meta-llama/Llama-2-7b-chat-hf",
    "codellama/CodeLlama-70b-Instruct-hf",
    "openchat/openchat-3.5-0106",
    "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
    "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "mistralai/Mixtral-8x7B-Instruct-v0.2",
]

def load_models(inp):
    print(type(inp))
    print(inp)
    print(models[inp])
    model_state= InferenceClient(models[inp[z]])
    out_box=(gr.update(label=models[inp]))
    return out_box, model_state

VERBOSE=False

def load_models(inp):
    if VERBOSE==True:    
        print(type(inp))
        print(inp)
        print(models[inp])
    #client_z.clear()
    #client_z.append(InferenceClient(models[inp]))
    return gr.update(label=models[inp])

def format_prompt(message, history, cust_p):
    prompt = ""
    if history:
        for user_prompt, bot_response in history:
            prompt += f"<start_of_turn>user{user_prompt}<end_of_turn>"
            prompt += f"<start_of_turn>model{bot_response}<end_of_turn>"
            if VERBOSE==True:
                print(prompt)
    #prompt += f"<start_of_turn>user\n{message}<end_of_turn>\n<start_of_turn>model\n"
    prompt+=cust_p.replace("USER_INPUT",message)
    return prompt

def chat_inf(system_prompt,prompt,history,memory,model_state,seed,temp,tokens,top_p,rep_p,chat_mem,cust_p):
    #token max=8192
    print(model_state)
    hist_len=0
    client=model_state
    if not history:
        history = []
        hist_len=0
    if not memory:
        memory = []
        mem_len=0        
    if memory:
        for ea in memory[0-chat_mem:]:
            hist_len+=len(str(ea))
    in_len=len(system_prompt+prompt)+hist_len

    if (in_len+tokens) > 8000:
        history.append((prompt,"Wait, that's too many tokens, please reduce the 'Chat Memory' value, or reduce the 'Max new tokens' value"))
        yield history,memory
    else:
        generate_kwargs = dict(
            temperature=temp,
            max_new_tokens=tokens,
            top_p=top_p,
            repetition_penalty=rep_p,
            do_sample=True,
            seed=seed,
        )
        if system_prompt:
            formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", memory[0-chat_mem:],cust_p)
        else:
            formatted_prompt = format_prompt(prompt, memory[0-chat_mem:],cust_p)
        stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
        output = ""
        for response in stream:
            output += response.token.text
            yield [(prompt,output)],memory
        history.append((prompt,output))
        memory.append((prompt,output))
        yield history,memory
        
    if VERBOSE==True:
        print("\n######### HIST "+str(in_len))
        print("\n######### TOKENS "+str(tokens))        

def get_screenshot(chat: list,height=5000,width=600,chatblock=[],theme="light",wait=3000,header=True):
    print(chatblock)
    tog = 0
    if chatblock:
        tog = 3
    result = ss_client.predict(str(chat),height,width,chatblock,header,theme,wait,api_name="/run_script")
    out = f'https://omnibus-html-image-current-tab.hf.space/file={result[tog]}'
    print(out)
    return out

def clear_fn():
    return None,None,None,None
rand_val=random.randint(1,1111111111111111)

def check_rand(inp,val):
    if inp==True:
        return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1,1111111111111111))
    else:
        return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
    
with gr.Blocks() as app:
    model_state=gr.State()
    memory=gr.State()
    gr.HTML("""<center><h1 style='font-size:xx-large;'>Huggingface Hub InferenceClient</h1><br><h3>Chatbot's</h3></center>""")
    chat_b = gr.Chatbot(height=500)
    with gr.Group():
        with gr.Row():
            with gr.Column(scale=3):
                inp = gr.Textbox(label="Prompt")
                sys_inp = gr.Textbox(label="System Prompt (optional)")
                with gr.Accordion("Prompt Format",open=False):
                    custom_prompt=gr.Textbox(label="Modify Prompt Format", info="For testing purposes. 'USER_INPUT' is where 'SYSTEM_PROMPT, PROMPT' will be placed", lines=3,value="<start_of_turn>userUSER_INPUT<end_of_turn><start_of_turn>model")                
                with gr.Row():
                    with gr.Column(scale=2):
                        btn = gr.Button("Chat")
                    with gr.Column(scale=1):
                        with gr.Group():
                            stop_btn=gr.Button("Stop")
                            clear_btn=gr.Button("Clear")                
                client_choice=gr.Dropdown(label="Models",type='index',choices=[c for c in models],value=models[0],interactive=True)
            with gr.Column(scale=1):
                with gr.Group():
                    rand = gr.Checkbox(label="Random Seed", value=True)
                    seed=gr.Slider(label="Seed", minimum=1, maximum=1111111111111111,step=1, value=rand_val)
                    tokens = gr.Slider(label="Max new tokens",value=1600,minimum=0,maximum=8000,step=64,interactive=True, visible=True,info="The maximum number of tokens")
                    temp=gr.Slider(label="Temperature",step=0.01, minimum=0.01, maximum=1.0, value=0.49)
                    top_p=gr.Slider(label="Top-P",step=0.01, minimum=0.01, maximum=1.0, value=0.49)
                    rep_p=gr.Slider(label="Repetition Penalty",step=0.01, minimum=0.1, maximum=2.0, value=0.99)
                    chat_mem=gr.Number(label="Chat Memory", info="Number of previous chats to retain",value=4)
        with gr.Accordion(label="Screenshot",open=False):
            with gr.Row():
                with gr.Column(scale=3):
                    im_btn=gr.Button("Screenshot")
                    img=gr.Image(type='filepath')
                with gr.Column(scale=1):
                    with gr.Row():
                        im_height=gr.Number(label="Height",value=5000)
                        im_width=gr.Number(label="Width",value=500)
                    wait_time=gr.Number(label="Wait Time",value=3000)
                    theme=gr.Radio(label="Theme", choices=["light","dark"],value="light")
                    chatblock=gr.Dropdown(label="Chatblocks",info="Choose specific blocks of chat",choices=[c for c in range(1,40)],multiselect=True)

    
    client_choice.change(load_models,client_choice,[chat_b,model_state])
    app.load(load_models,client_choice,[chat_b,model_state])
    
    im_go=im_btn.click(get_screenshot,[chat_b,im_height,im_width,chatblock,theme,wait_time],img)
    
    chat_sub=inp.submit(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,memory,model_state,seed,temp,tokens,top_p,rep_p,chat_mem,custom_prompt],[chat_b,memory])
    go=btn.click(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem,custom_prompt],[chat_b,memory])
    
    stop_btn.click(None,None,None,cancels=[go,im_go,chat_sub])
    clear_btn.click(clear_fn,None,[inp,sys_inp,chat_b,memory])
app.queue(default_concurrency_limit=10).launch()