Spaces:
Runtime error
Runtime error
File size: 73,088 Bytes
eeb7ca1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 |
import glob
import inspect
import os
import pathlib
import pickle
import queue
import random
import shutil
import subprocess
import sys
import tempfile
import traceback
import uuid
import zipfile
from collections import defaultdict
from datetime import datetime
from functools import reduce
from operator import concat
from joblib import Parallel, delayed
from langchain.embeddings import HuggingFaceInstructEmbeddings
from tqdm import tqdm
from enums import DocumentChoices
from prompter import non_hf_types, PromptType
from utils import wrapped_partial, EThread, import_matplotlib, sanitize_filename, makedirs, get_url, flatten_list, \
get_device, ProgressParallel, remove, hash_file, clear_torch_cache
import_matplotlib()
import numpy as np
import pandas as pd
import requests
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
# , GCSDirectoryLoader, GCSFileLoader
# , OutlookMessageLoader # GPL3
# ImageCaptionLoader, # use our own wrapper
# ReadTheDocsLoader, # no special file, some path, so have to give as special option
from langchain.document_loaders import PyPDFLoader, TextLoader, CSVLoader, PythonLoader, TomlLoader, \
UnstructuredURLLoader, UnstructuredHTMLLoader, UnstructuredWordDocumentLoader, UnstructuredMarkdownLoader, \
EverNoteLoader, UnstructuredEmailLoader, UnstructuredODTLoader, UnstructuredPowerPointLoader, \
UnstructuredEPubLoader, UnstructuredImageLoader, UnstructuredRTFLoader, ArxivLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains.question_answering import load_qa_chain
from langchain.docstore.document import Document
from langchain import PromptTemplate
from langchain.vectorstores import Chroma
def get_db(sources, use_openai_embedding=False, db_type='faiss',
persist_directory="db_dir", load_db_if_exists=True,
langchain_mode='notset',
collection_name=None,
hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2"):
if not sources:
return None
# get embedding model
embedding = get_embedding(use_openai_embedding, hf_embedding_model=hf_embedding_model)
assert collection_name is not None or langchain_mode != 'notset'
if collection_name is None:
collection_name = langchain_mode.replace(' ', '_')
# Create vector database
if db_type == 'faiss':
from langchain.vectorstores import FAISS
db = FAISS.from_documents(sources, embedding)
elif db_type == 'weaviate':
import weaviate
from weaviate.embedded import EmbeddedOptions
from langchain.vectorstores import Weaviate
if os.getenv('WEAVIATE_URL', None):
client = _create_local_weaviate_client()
else:
client = weaviate.Client(
embedded_options=EmbeddedOptions()
)
index_name = collection_name.capitalize()
db = Weaviate.from_documents(documents=sources, embedding=embedding, client=client, by_text=False,
index_name=index_name)
elif db_type == 'chroma':
assert persist_directory is not None
os.makedirs(persist_directory, exist_ok=True)
# see if already actually have persistent db, and deal with possible changes in embedding
db = get_existing_db(None, persist_directory, load_db_if_exists, db_type, use_openai_embedding, langchain_mode,
hf_embedding_model, verbose=False)
if db is None:
db = Chroma.from_documents(documents=sources,
embedding=embedding,
persist_directory=persist_directory,
collection_name=collection_name,
anonymized_telemetry=False)
db.persist()
clear_embedding(db)
save_embed(db, use_openai_embedding, hf_embedding_model)
else:
# then just add
db, num_new_sources, new_sources_metadata = add_to_db(db, sources, db_type=db_type,
use_openai_embedding=use_openai_embedding,
hf_embedding_model=hf_embedding_model)
else:
raise RuntimeError("No such db_type=%s" % db_type)
return db
def _get_unique_sources_in_weaviate(db):
batch_size = 100
id_source_list = []
result = db._client.data_object.get(class_name=db._index_name, limit=batch_size)
while result['objects']:
id_source_list += [(obj['id'], obj['properties']['source']) for obj in result['objects']]
last_id = id_source_list[-1][0]
result = db._client.data_object.get(class_name=db._index_name, limit=batch_size, after=last_id)
unique_sources = {source for _, source in id_source_list}
return unique_sources
def add_to_db(db, sources, db_type='faiss',
avoid_dup_by_file=False,
avoid_dup_by_content=True,
use_openai_embedding=False,
hf_embedding_model=None):
assert hf_embedding_model is not None
num_new_sources = len(sources)
if not sources:
return db, num_new_sources, []
if db_type == 'faiss':
db.add_documents(sources)
elif db_type == 'weaviate':
# FIXME: only control by file name, not hash yet
if avoid_dup_by_file or avoid_dup_by_content:
unique_sources = _get_unique_sources_in_weaviate(db)
sources = [x for x in sources if x.metadata['source'] not in unique_sources]
num_new_sources = len(sources)
if num_new_sources == 0:
return db, num_new_sources, []
db.add_documents(documents=sources)
elif db_type == 'chroma':
collection = db.get()
# files we already have:
metadata_files = set([x['source'] for x in collection['metadatas']])
if avoid_dup_by_file:
# Too weak in case file changed content, assume parent shouldn't pass true for this for now
raise RuntimeError("Not desired code path")
sources = [x for x in sources if x.metadata['source'] not in metadata_files]
if avoid_dup_by_content:
# look at hash, instead of page_content
# migration: If no hash previously, avoid updating,
# since don't know if need to update and may be expensive to redo all unhashed files
metadata_hash_ids = set(
[x['hashid'] for x in collection['metadatas'] if 'hashid' in x and x['hashid'] not in ["None", None]])
# avoid sources with same hash
sources = [x for x in sources if x.metadata.get('hashid') not in metadata_hash_ids]
# get new file names that match existing file names. delete existing files we are overridding
dup_metadata_files = set([x.metadata['source'] for x in sources if x.metadata['source'] in metadata_files])
print("Removing %s duplicate files from db because ingesting those as new documents" % len(
dup_metadata_files), flush=True)
client_collection = db._client.get_collection(name=db._collection.name,
embedding_function=db._collection._embedding_function)
for dup_file in dup_metadata_files:
dup_file_meta = dict(source=dup_file)
try:
client_collection.delete(where=dup_file_meta)
except KeyError:
pass
num_new_sources = len(sources)
if num_new_sources == 0:
return db, num_new_sources, []
db.add_documents(documents=sources)
db.persist()
clear_embedding(db)
save_embed(db, use_openai_embedding, hf_embedding_model)
else:
raise RuntimeError("No such db_type=%s" % db_type)
new_sources_metadata = [x.metadata for x in sources]
return db, num_new_sources, new_sources_metadata
def create_or_update_db(db_type, persist_directory, collection_name,
sources, use_openai_embedding, add_if_exists, verbose, hf_embedding_model):
if db_type == 'weaviate':
import weaviate
from weaviate.embedded import EmbeddedOptions
if os.getenv('WEAVIATE_URL', None):
client = _create_local_weaviate_client()
else:
client = weaviate.Client(
embedded_options=EmbeddedOptions()
)
index_name = collection_name.replace(' ', '_').capitalize()
if client.schema.exists(index_name) and not add_if_exists:
client.schema.delete_class(index_name)
if verbose:
print("Removing %s" % index_name, flush=True)
elif db_type == 'chroma':
if not os.path.isdir(persist_directory) or not add_if_exists:
if os.path.isdir(persist_directory):
if verbose:
print("Removing %s" % persist_directory, flush=True)
remove(persist_directory)
if verbose:
print("Generating db", flush=True)
if not add_if_exists:
if verbose:
print("Generating db", flush=True)
else:
if verbose:
print("Loading and updating db", flush=True)
db = get_db(sources,
use_openai_embedding=use_openai_embedding,
db_type=db_type,
persist_directory=persist_directory,
langchain_mode=collection_name,
hf_embedding_model=hf_embedding_model)
return db
def get_embedding(use_openai_embedding, hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2"):
# Get embedding model
if use_openai_embedding:
assert os.getenv("OPENAI_API_KEY") is not None, "Set ENV OPENAI_API_KEY"
from langchain.embeddings import OpenAIEmbeddings
embedding = OpenAIEmbeddings()
else:
# to ensure can fork without deadlock
from langchain.embeddings import HuggingFaceEmbeddings
device, torch_dtype, context_class = get_device_dtype()
model_kwargs = dict(device=device)
if 'instructor' in hf_embedding_model:
encode_kwargs = {'normalize_embeddings': True}
embedding = HuggingFaceInstructEmbeddings(model_name=hf_embedding_model,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs)
else:
embedding = HuggingFaceEmbeddings(model_name=hf_embedding_model, model_kwargs=model_kwargs)
return embedding
def get_answer_from_sources(chain, sources, question):
return chain(
{
"input_documents": sources,
"question": question,
},
return_only_outputs=True,
)["output_text"]
def get_llm(use_openai_model=False, model_name=None, model=None,
tokenizer=None, stream_output=False,
max_new_tokens=256,
temperature=0.1,
repetition_penalty=1.0,
top_k=40,
top_p=0.7,
prompt_type=None,
prompt_dict=None,
prompter=None,
verbose=False,
):
if use_openai_model:
from langchain.llms import OpenAI
llm = OpenAI(temperature=0)
model_name = 'openai'
streamer = None
prompt_type = 'plain'
elif model_name in non_hf_types:
from gpt4all_llm import get_llm_gpt4all
llm = get_llm_gpt4all(model_name, model=model, max_new_tokens=max_new_tokens,
temperature=temperature,
repetition_penalty=repetition_penalty,
top_k=top_k,
top_p=top_p,
verbose=verbose,
)
streamer = None
prompt_type = 'plain'
else:
from transformers import AutoTokenizer, AutoModelForCausalLM
if model is None:
# only used if didn't pass model in
assert tokenizer is None
prompt_type = 'human_bot'
model_name = 'h2oai/h2ogpt-oasst1-512-12b'
# model_name = 'h2oai/h2ogpt-oig-oasst1-512-6_9b'
# model_name = 'h2oai/h2ogpt-oasst1-512-20b'
tokenizer = AutoTokenizer.from_pretrained(model_name)
device, torch_dtype, context_class = get_device_dtype()
with context_class(device):
load_8bit = True
# FIXME: for now not to spread across hetero GPUs
# device_map={"": 0} if load_8bit and device == 'cuda' else "auto"
device_map = {"": 0} if device == 'cuda' else "auto"
model = AutoModelForCausalLM.from_pretrained(model_name,
device_map=device_map,
torch_dtype=torch_dtype,
load_in_8bit=load_8bit)
max_max_tokens = tokenizer.model_max_length
gen_kwargs = dict(max_new_tokens=max_new_tokens,
return_full_text=True,
early_stopping=False,
handle_long_generation='hole')
if stream_output:
skip_prompt = False
from generate import H2OTextIteratorStreamer
decoder_kwargs = {}
streamer = H2OTextIteratorStreamer(tokenizer, skip_prompt=skip_prompt, block=False, **decoder_kwargs)
gen_kwargs.update(dict(streamer=streamer))
else:
streamer = None
from h2oai_pipeline import H2OTextGenerationPipeline
pipe = H2OTextGenerationPipeline(model=model, use_prompter=True,
prompter=prompter,
prompt_type=prompt_type,
prompt_dict=prompt_dict,
sanitize_bot_response=True,
chat=False, stream_output=stream_output,
tokenizer=tokenizer,
max_input_tokens=max_max_tokens - max_new_tokens,
**gen_kwargs)
# pipe.task = "text-generation"
# below makes it listen only to our prompt removal,
# not built in prompt removal that is less general and not specific for our model
pipe.task = "text2text-generation"
from langchain.llms import HuggingFacePipeline
llm = HuggingFacePipeline(pipeline=pipe)
return llm, model_name, streamer, prompt_type
def get_device_dtype():
# torch.device("cuda") leads to cuda:x cuda:y mismatches for multi-GPU consistently
import torch
n_gpus = torch.cuda.device_count() if torch.cuda.is_available else 0
device = 'cpu' if n_gpus == 0 else 'cuda'
# from utils import NullContext
# context_class = NullContext if n_gpus > 1 or n_gpus == 0 else context_class
context_class = torch.device
torch_dtype = torch.float16 if device == 'cuda' else torch.float32
return device, torch_dtype, context_class
def get_wiki_data(title, first_paragraph_only, text_limit=None, take_head=True):
"""
Get wikipedia data from online
:param title:
:param first_paragraph_only:
:param text_limit:
:param take_head:
:return:
"""
filename = 'wiki_%s_%s_%s_%s.data' % (first_paragraph_only, title, text_limit, take_head)
url = f"https://en.wikipedia.org/w/api.php?format=json&action=query&prop=extracts&explaintext=1&titles={title}"
if first_paragraph_only:
url += "&exintro=1"
import json
if not os.path.isfile(filename):
data = requests.get(url).json()
json.dump(data, open(filename, 'wt'))
else:
data = json.load(open(filename, "rt"))
page_content = list(data["query"]["pages"].values())[0]["extract"]
if take_head is not None and text_limit is not None:
page_content = page_content[:text_limit] if take_head else page_content[:-text_limit]
title_url = str(title).replace(' ', '_')
return Document(
page_content=page_content,
metadata={"source": f"https://en.wikipedia.org/wiki/{title_url}"},
)
def get_wiki_sources(first_para=True, text_limit=None):
"""
Get specific named sources from wikipedia
:param first_para:
:param text_limit:
:return:
"""
default_wiki_sources = ['Unix', 'Microsoft_Windows', 'Linux']
wiki_sources = list(os.getenv('WIKI_SOURCES', default_wiki_sources))
return [get_wiki_data(x, first_para, text_limit=text_limit) for x in wiki_sources]
def get_github_docs(repo_owner, repo_name):
"""
Access github from specific repo
:param repo_owner:
:param repo_name:
:return:
"""
with tempfile.TemporaryDirectory() as d:
subprocess.check_call(
f"git clone --depth 1 https://github.com/{repo_owner}/{repo_name}.git .",
cwd=d,
shell=True,
)
git_sha = (
subprocess.check_output("git rev-parse HEAD", shell=True, cwd=d)
.decode("utf-8")
.strip()
)
repo_path = pathlib.Path(d)
markdown_files = list(repo_path.glob("*/*.md")) + list(
repo_path.glob("*/*.mdx")
)
for markdown_file in markdown_files:
with open(markdown_file, "r") as f:
relative_path = markdown_file.relative_to(repo_path)
github_url = f"https://github.com/{repo_owner}/{repo_name}/blob/{git_sha}/{relative_path}"
yield Document(page_content=f.read(), metadata={"source": github_url})
def get_dai_pickle(dest="."):
from huggingface_hub import hf_hub_download
# True for case when locally already logged in with correct token, so don't have to set key
token = os.getenv('HUGGINGFACE_API_TOKEN', True)
path_to_zip_file = hf_hub_download('h2oai/dai_docs', 'dai_docs.pickle', token=token, repo_type='dataset')
shutil.copy(path_to_zip_file, dest)
def get_dai_docs(from_hf=False, get_pickle=True):
"""
Consume DAI documentation, or consume from public pickle
:param from_hf: get DAI docs from HF, then generate pickle for later use by LangChain
:param get_pickle: Avoid raw DAI docs, just get pickle directly from HF
:return:
"""
import pickle
if get_pickle:
get_dai_pickle()
dai_store = 'dai_docs.pickle'
dst = "working_dir_docs"
if not os.path.isfile(dai_store):
from create_data import setup_dai_docs
dst = setup_dai_docs(dst=dst, from_hf=from_hf)
import glob
files = list(glob.glob(os.path.join(dst, '*rst'), recursive=True))
basedir = os.path.abspath(os.getcwd())
from create_data import rst_to_outputs
new_outputs = rst_to_outputs(files)
os.chdir(basedir)
pickle.dump(new_outputs, open(dai_store, 'wb'))
else:
new_outputs = pickle.load(open(dai_store, 'rb'))
sources = []
for line, file in new_outputs:
# gradio requires any linked file to be with app.py
sym_src = os.path.abspath(os.path.join(dst, file))
sym_dst = os.path.abspath(os.path.join(os.getcwd(), file))
if os.path.lexists(sym_dst):
os.remove(sym_dst)
os.symlink(sym_src, sym_dst)
itm = Document(page_content=line, metadata={"source": file})
# NOTE: yield has issues when going into db, loses metadata
# yield itm
sources.append(itm)
return sources
import distutils.spawn
have_tesseract = distutils.spawn.find_executable("tesseract")
have_libreoffice = distutils.spawn.find_executable("libreoffice")
import pkg_resources
try:
assert pkg_resources.get_distribution('arxiv') is not None
assert pkg_resources.get_distribution('pymupdf') is not None
have_arxiv = True
except (pkg_resources.DistributionNotFound, AssertionError):
have_arxiv = False
try:
assert pkg_resources.get_distribution('pymupdf') is not None
have_pymupdf = True
except (pkg_resources.DistributionNotFound, AssertionError):
have_pymupdf = False
image_types = ["png", "jpg", "jpeg"]
non_image_types = ["pdf", "txt", "csv", "toml", "py", "rst", "rtf",
"md", "html",
"enex", "eml", "epub", "odt", "pptx", "ppt",
"zip", "urls",
]
# "msg", GPL3
if have_libreoffice:
non_image_types.extend(["docx", "doc"])
file_types = non_image_types + image_types
def add_meta(docs1, file):
file_extension = pathlib.Path(file).suffix
hashid = hash_file(file)
if not isinstance(docs1, list):
docs1 = [docs1]
[x.metadata.update(dict(input_type=file_extension, date=str(datetime.now), hashid=hashid)) for x in docs1]
def file_to_doc(file, base_path=None, verbose=False, fail_any_exception=False,
chunk=True, chunk_size=512,
is_url=False, is_txt=False,
enable_captions=True,
captions_model=None,
enable_ocr=False, caption_loader=None,
headsize=50):
if file is None:
if fail_any_exception:
raise RuntimeError("Unexpected None file")
else:
return []
doc1 = [] # in case no support, or disabled support
if base_path is None and not is_txt and not is_url:
# then assume want to persist but don't care which path used
# can't be in base_path
dir_name = os.path.dirname(file)
base_name = os.path.basename(file)
# if from gradio, will have its own temp uuid too, but that's ok
base_name = sanitize_filename(base_name) + "_" + str(uuid.uuid4())[:10]
base_path = os.path.join(dir_name, base_name)
if is_url:
if file.lower().startswith('arxiv:'):
query = file.lower().split('arxiv:')
if len(query) == 2 and have_arxiv:
query = query[1]
docs1 = ArxivLoader(query=query, load_max_docs=20, load_all_available_meta=True).load()
# ensure string, sometimes None
[[x.metadata.update({k: str(v)}) for k, v in x.metadata.items()] for x in docs1]
query_url = f"https://arxiv.org/abs/{query}"
[x.metadata.update(
dict(source=x.metadata.get('entry_id', query_url), query=query_url,
input_type='arxiv', head=x.metadata.get('Title', ''), date=str(datetime.now))) for x in
docs1]
else:
docs1 = []
else:
docs1 = UnstructuredURLLoader(urls=[file]).load()
[x.metadata.update(dict(input_type='url', date=str(datetime.now))) for x in docs1]
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
elif is_txt:
base_path = "user_paste"
source_file = os.path.join(base_path, "_%s" % str(uuid.uuid4())[:10])
makedirs(os.path.dirname(source_file), exist_ok=True)
with open(source_file, "wt") as f:
f.write(file)
metadata = dict(source=source_file, date=str(datetime.now()), input_type='pasted txt')
doc1 = Document(page_content=file, metadata=metadata)
elif file.lower().endswith('.html') or file.lower().endswith('.mhtml'):
docs1 = UnstructuredHTMLLoader(file_path=file).load()
add_meta(docs1, file)
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
elif (file.lower().endswith('.docx') or file.lower().endswith('.doc')) and have_libreoffice:
docs1 = UnstructuredWordDocumentLoader(file_path=file).load()
add_meta(docs1, file)
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
elif file.lower().endswith('.odt'):
docs1 = UnstructuredODTLoader(file_path=file).load()
add_meta(docs1, file)
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
elif file.lower().endswith('pptx') or file.lower().endswith('ppt'):
docs1 = UnstructuredPowerPointLoader(file_path=file).load()
add_meta(docs1, file)
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
elif file.lower().endswith('.txt'):
# use UnstructuredFileLoader ?
docs1 = TextLoader(file, encoding="utf8", autodetect_encoding=True).load()
# makes just one, but big one
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
add_meta(doc1, file)
elif file.lower().endswith('.rtf'):
docs1 = UnstructuredRTFLoader(file).load()
add_meta(docs1, file)
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
elif file.lower().endswith('.md'):
docs1 = UnstructuredMarkdownLoader(file).load()
add_meta(docs1, file)
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
elif file.lower().endswith('.enex'):
docs1 = EverNoteLoader(file).load()
add_meta(doc1, file)
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
elif file.lower().endswith('.epub'):
docs1 = UnstructuredEPubLoader(file).load()
add_meta(docs1, file)
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
elif file.lower().endswith('.jpeg') or file.lower().endswith('.jpg') or file.lower().endswith('.png'):
docs1 = []
if have_tesseract and enable_ocr:
# OCR, somewhat works, but not great
docs1.extend(UnstructuredImageLoader(file).load())
add_meta(docs1, file)
if enable_captions:
# BLIP
if caption_loader is not None and not isinstance(caption_loader, (str, bool)):
# assumes didn't fork into this process with joblib, else can deadlock
caption_loader.set_image_paths([file])
docs1c = caption_loader.load()
add_meta(docs1c, file)
[x.metadata.update(dict(head=x.page_content[:headsize].strip())) for x in docs1c]
docs1.extend(docs1c)
else:
from image_captions import H2OImageCaptionLoader
caption_loader = H2OImageCaptionLoader(caption_gpu=caption_loader == 'gpu',
blip_model=captions_model,
blip_processor=captions_model)
caption_loader.set_image_paths([file])
docs1c = caption_loader.load()
add_meta(docs1c, file)
[x.metadata.update(dict(head=x.page_content[:headsize].strip())) for x in docs1c]
docs1.extend(docs1c)
for doci in docs1:
doci.metadata['source'] = doci.metadata['image_path']
doci.metadata['hash'] = hash_file(doci.metadata['source'])
if docs1:
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
elif file.lower().endswith('.msg'):
raise RuntimeError("Not supported, GPL3 license")
# docs1 = OutlookMessageLoader(file).load()
# docs1[0].metadata['source'] = file
elif file.lower().endswith('.eml'):
try:
docs1 = UnstructuredEmailLoader(file).load()
add_meta(docs1, file)
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
except ValueError as e:
if 'text/html content not found in email' in str(e):
# e.g. plain/text dict key exists, but not
# doc1 = TextLoader(file, encoding="utf8").load()
docs1 = UnstructuredEmailLoader(file, content_source="text/plain").load()
add_meta(docs1, file)
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
else:
raise
# elif file.lower().endswith('.gcsdir'):
# doc1 = GCSDirectoryLoader(project_name, bucket, prefix).load()
# elif file.lower().endswith('.gcsfile'):
# doc1 = GCSFileLoader(project_name, bucket, blob).load()
elif file.lower().endswith('.rst'):
with open(file, "r") as f:
doc1 = Document(page_content=f.read(), metadata={"source": file})
add_meta(doc1, file)
elif file.lower().endswith('.pdf'):
env_gpt4all_file = ".env_gpt4all"
from dotenv import dotenv_values
env_kwargs = dotenv_values(env_gpt4all_file)
pdf_class_name = env_kwargs.get('PDF_CLASS_NAME', 'PyMuPDFParser')
if have_pymupdf and pdf_class_name == 'PyMuPDFParser':
# GPL, only use if installed
from langchain.document_loaders import PyMuPDFLoader
# load() still chunks by pages, but every page has title at start to help
doc1 = PyMuPDFLoader(file).load()
else:
# open-source fallback
# load() still chunks by pages, but every page has title at start to help
doc1 = PyPDFLoader(file).load()
# Some PDFs return nothing or junk from PDFMinerLoader
add_meta(doc1, file)
elif file.lower().endswith('.csv'):
doc1 = CSVLoader(file).load()
add_meta(doc1, file)
elif file.lower().endswith('.py'):
doc1 = PythonLoader(file).load()
add_meta(doc1, file)
elif file.lower().endswith('.toml'):
doc1 = TomlLoader(file).load()
add_meta(doc1, file)
elif file.lower().endswith('.urls'):
with open(file, "r") as f:
docs1 = UnstructuredURLLoader(urls=f.readlines()).load()
add_meta(docs1, file)
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
elif file.lower().endswith('.zip'):
with zipfile.ZipFile(file, 'r') as zip_ref:
# don't put into temporary path, since want to keep references to docs inside zip
# so just extract in path where
zip_ref.extractall(base_path)
# recurse
doc1 = path_to_docs(base_path, verbose=verbose, fail_any_exception=fail_any_exception)
else:
raise RuntimeError("No file handler for %s" % os.path.basename(file))
# allow doc1 to be list or not. If not list, did not chunk yet, so chunk now
# if list of length one, don't trust and chunk it
if not isinstance(doc1, list):
if chunk:
docs = chunk_sources([doc1], chunk=chunk, chunk_size=chunk_size)
else:
docs = [doc1]
elif isinstance(doc1, list) and len(doc1) == 1:
if chunk:
docs = chunk_sources(doc1, chunk=chunk, chunk_size=chunk_size)
else:
docs = doc1
else:
docs = doc1
assert isinstance(docs, list)
return docs
def path_to_doc1(file, verbose=False, fail_any_exception=False, return_file=True,
chunk=True, chunk_size=512,
is_url=False, is_txt=False,
enable_captions=True,
captions_model=None,
enable_ocr=False, caption_loader=None):
if verbose:
if is_url:
print("Ingesting URL: %s" % file, flush=True)
elif is_txt:
print("Ingesting Text: %s" % file, flush=True)
else:
print("Ingesting file: %s" % file, flush=True)
res = None
try:
# don't pass base_path=path, would infinitely recurse
res = file_to_doc(file, base_path=None, verbose=verbose, fail_any_exception=fail_any_exception,
chunk=chunk, chunk_size=chunk_size,
is_url=is_url, is_txt=is_txt,
enable_captions=enable_captions,
captions_model=captions_model,
enable_ocr=enable_ocr,
caption_loader=caption_loader)
except BaseException as e:
print("Failed to ingest %s due to %s" % (file, traceback.format_exc()))
if fail_any_exception:
raise
else:
exception_doc = Document(
page_content='',
metadata={"source": file, "exception": str(e), "traceback": traceback.format_exc()})
res = [exception_doc]
if return_file:
base_tmp = "temp_path_to_doc1"
if not os.path.isdir(base_tmp):
os.makedirs(base_tmp, exist_ok=True)
filename = os.path.join(base_tmp, str(uuid.uuid4()) + ".tmp.pickle")
with open(filename, 'wb') as f:
pickle.dump(res, f)
return filename
return res
def path_to_docs(path_or_paths, verbose=False, fail_any_exception=False, n_jobs=-1,
chunk=True, chunk_size=512,
url=None, text=None,
enable_captions=True,
captions_model=None,
caption_loader=None,
enable_ocr=False,
existing_files=[],
existing_hash_ids={},
):
globs_image_types = []
globs_non_image_types = []
if not path_or_paths and not url and not text:
return []
elif url:
globs_non_image_types = [url]
elif text:
globs_non_image_types = [text]
elif isinstance(path_or_paths, str):
# single path, only consume allowed files
path = path_or_paths
# Below globs should match patterns in file_to_doc()
[globs_image_types.extend(glob.glob(os.path.join(path, "./**/*.%s" % ftype), recursive=True))
for ftype in image_types]
[globs_non_image_types.extend(glob.glob(os.path.join(path, "./**/*.%s" % ftype), recursive=True))
for ftype in non_image_types]
else:
# list/tuple of files (consume what can, and exception those that selected but cannot consume so user knows)
assert isinstance(path_or_paths, (list, tuple)), "Wrong type for path_or_paths: %s" % type(path_or_paths)
# reform out of allowed types
globs_image_types.extend(flatten_list([[x for x in path_or_paths if x.endswith(y)] for y in image_types]))
# could do below:
# globs_non_image_types = flatten_list([[x for x in path_or_paths if x.endswith(y)] for y in non_image_types])
# But instead, allow fail so can collect unsupported too
set_globs_image_types = set(globs_image_types)
globs_non_image_types.extend([x for x in path_or_paths if x not in set_globs_image_types])
# filter out any files to skip (e.g. if already processed them)
# this is easy, but too aggressive in case a file changed, so parent probably passed existing_files=[]
assert not existing_files, "DEV: assume not using this approach"
if existing_files:
set_skip_files = set(existing_files)
globs_image_types = [x for x in globs_image_types if x not in set_skip_files]
globs_non_image_types = [x for x in globs_non_image_types if x not in set_skip_files]
if existing_hash_ids:
# assume consistent with add_meta() use of hash_file(file)
# also assume consistent with get_existing_hash_ids for dict creation
# assume hashable values
existing_hash_ids_set = set(existing_hash_ids.items())
hash_ids_all_image = set({x: hash_file(x) for x in globs_image_types}.items())
hash_ids_all_non_image = set({x: hash_file(x) for x in globs_non_image_types}.items())
# don't use symmetric diff. If file is gone, ignore and don't remove or something
# just consider existing files (key) having new hash or not (value)
new_files_image = set(dict(hash_ids_all_image - existing_hash_ids_set).keys())
new_files_non_image = set(dict(hash_ids_all_non_image - existing_hash_ids_set).keys())
globs_image_types = [x for x in globs_image_types if x in new_files_image]
globs_non_image_types = [x for x in globs_non_image_types if x in new_files_non_image]
# could use generator, but messes up metadata handling in recursive case
if caption_loader and not isinstance(caption_loader, (bool, str)) and \
caption_loader.device != 'cpu' or \
get_device() == 'cuda':
# to avoid deadlocks, presume was preloaded and so can't fork due to cuda context
n_jobs_image = 1
else:
n_jobs_image = n_jobs
return_file = True # local choice
is_url = url is not None
is_txt = text is not None
kwargs = dict(verbose=verbose, fail_any_exception=fail_any_exception,
return_file=return_file,
chunk=chunk, chunk_size=chunk_size,
is_url=is_url,
is_txt=is_txt,
enable_captions=enable_captions,
captions_model=captions_model,
caption_loader=caption_loader,
enable_ocr=enable_ocr,
)
if n_jobs != 1 and len(globs_non_image_types) > 1:
# avoid nesting, e.g. upload 1 zip and then inside many files
# harder to handle if upload many zips with many files, inner parallel one will be disabled by joblib
documents = ProgressParallel(n_jobs=n_jobs, verbose=10 if verbose else 0, backend='multiprocessing')(
delayed(path_to_doc1)(file, **kwargs) for file in globs_non_image_types
)
else:
documents = [path_to_doc1(file, **kwargs) for file in tqdm(globs_non_image_types)]
# do images separately since can't fork after cuda in parent, so can't be parallel
if n_jobs_image != 1 and len(globs_image_types) > 1:
# avoid nesting, e.g. upload 1 zip and then inside many files
# harder to handle if upload many zips with many files, inner parallel one will be disabled by joblib
image_documents = ProgressParallel(n_jobs=n_jobs, verbose=10 if verbose else 0, backend='multiprocessing')(
delayed(path_to_doc1)(file, **kwargs) for file in globs_image_types
)
else:
image_documents = [path_to_doc1(file, **kwargs) for file in tqdm(globs_image_types)]
# add image docs in
documents += image_documents
if return_file:
# then documents really are files
files = documents.copy()
documents = []
for fil in files:
with open(fil, 'rb') as f:
documents.extend(pickle.load(f))
# remove temp pickle
os.remove(fil)
else:
documents = reduce(concat, documents)
return documents
def prep_langchain(persist_directory,
load_db_if_exists,
db_type, use_openai_embedding, langchain_mode, user_path,
hf_embedding_model, n_jobs=-1, kwargs_make_db={}):
"""
do prep first time, involving downloads
# FIXME: Add github caching then add here
:return:
"""
assert langchain_mode not in ['MyData'], "Should not prep scratch data"
db_dir_exists = os.path.isdir(persist_directory)
if db_dir_exists and user_path is None:
print("Prep: persist_directory=%s exists, using" % persist_directory, flush=True)
db = get_existing_db(None, persist_directory, load_db_if_exists, db_type, use_openai_embedding, langchain_mode,
hf_embedding_model)
else:
if db_dir_exists and user_path is not None:
print("Prep: persist_directory=%s exists, user_path=%s passed, adding any changed or new documents" % (
persist_directory, user_path), flush=True)
elif not db_dir_exists:
print("Prep: persist_directory=%s does not exist, regenerating" % persist_directory, flush=True)
db = None
if langchain_mode in ['All', 'DriverlessAI docs']:
# FIXME: Could also just use dai_docs.pickle directly and upload that
get_dai_docs(from_hf=True)
if langchain_mode in ['All', 'wiki']:
get_wiki_sources(first_para=kwargs_make_db['first_para'], text_limit=kwargs_make_db['text_limit'])
langchain_kwargs = kwargs_make_db.copy()
langchain_kwargs.update(locals())
db, num_new_sources, new_sources_metadata = make_db(**langchain_kwargs)
return db
import posthog
posthog.disabled = True
class FakeConsumer(object):
def __init__(self, *args, **kwargs):
pass
def run(self):
pass
def pause(self):
pass
def upload(self):
pass
def next(self):
pass
def request(self, batch):
pass
posthog.Consumer = FakeConsumer
def check_update_chroma_embedding(db, use_openai_embedding, hf_embedding_model, langchain_mode):
changed_db = False
if load_embed(db) != (use_openai_embedding, hf_embedding_model):
print("Detected new embedding, updating db: %s" % langchain_mode, flush=True)
# handle embedding changes
db_get = db.get()
sources = [Document(page_content=result[0], metadata=result[1] or {})
for result in zip(db_get['documents'], db_get['metadatas'])]
# delete index, has to be redone
persist_directory = db._persist_directory
shutil.move(persist_directory, persist_directory + "_" + str(uuid.uuid4()) + ".bak")
db_type = 'chroma'
load_db_if_exists = False
db = get_db(sources, use_openai_embedding=use_openai_embedding, db_type=db_type,
persist_directory=persist_directory, load_db_if_exists=load_db_if_exists,
langchain_mode=langchain_mode,
collection_name=None,
hf_embedding_model=hf_embedding_model)
if False:
# below doesn't work if db already in memory, so have to switch to new db as above
# upsert does new embedding, but if index already in memory, complains about size mismatch etc.
client_collection = db._client.get_collection(name=db._collection.name,
embedding_function=db._collection._embedding_function)
client_collection.upsert(ids=db_get['ids'], metadatas=db_get['metadatas'], documents=db_get['documents'])
changed_db = True
print("Done updating db for new embedding: %s" % langchain_mode, flush=True)
return db, changed_db
def get_existing_db(db, persist_directory, load_db_if_exists, db_type, use_openai_embedding, langchain_mode,
hf_embedding_model, verbose=False, check_embedding=True):
if load_db_if_exists and db_type == 'chroma' and os.path.isdir(persist_directory) and os.path.isdir(
os.path.join(persist_directory, 'index')):
if db is None:
if verbose:
print("DO Loading db: %s" % langchain_mode, flush=True)
embedding = get_embedding(use_openai_embedding, hf_embedding_model=hf_embedding_model)
from chromadb.config import Settings
client_settings = Settings(anonymized_telemetry=False,
chroma_db_impl="duckdb+parquet",
persist_directory=persist_directory)
db = Chroma(persist_directory=persist_directory, embedding_function=embedding,
collection_name=langchain_mode.replace(' ', '_'),
client_settings=client_settings)
if verbose:
print("DONE Loading db: %s" % langchain_mode, flush=True)
else:
if verbose:
print("USING already-loaded db: %s" % langchain_mode, flush=True)
if check_embedding:
db_trial, changed_db = check_update_chroma_embedding(db, use_openai_embedding, hf_embedding_model,
langchain_mode)
if changed_db:
db = db_trial
# only call persist if really changed db, else takes too long for large db
db.persist()
clear_embedding(db)
save_embed(db, use_openai_embedding, hf_embedding_model)
return db
return None
def clear_embedding(db):
# don't keep on GPU, wastes memory, push back onto CPU and only put back on GPU once again embed
db._embedding_function.client.cpu()
clear_torch_cache()
def make_db(**langchain_kwargs):
func_names = list(inspect.signature(_make_db).parameters)
missing_kwargs = [x for x in func_names if x not in langchain_kwargs]
defaults_db = {k: v.default for k, v in dict(inspect.signature(run_qa_db).parameters).items()}
for k in missing_kwargs:
if k in defaults_db:
langchain_kwargs[k] = defaults_db[k]
# final check for missing
missing_kwargs = [x for x in func_names if x not in langchain_kwargs]
assert not missing_kwargs, "Missing kwargs: %s" % missing_kwargs
# only keep actual used
langchain_kwargs = {k: v for k, v in langchain_kwargs.items() if k in func_names}
return _make_db(**langchain_kwargs)
def save_embed(db, use_openai_embedding, hf_embedding_model):
embed_info_file = os.path.join(db._persist_directory, 'embed_info')
with open(embed_info_file, 'wb') as f:
pickle.dump((use_openai_embedding, hf_embedding_model), f)
return use_openai_embedding, hf_embedding_model
def load_embed(db):
embed_info_file = os.path.join(db._persist_directory, 'embed_info')
if os.path.isfile(embed_info_file):
with open(embed_info_file, 'rb') as f:
use_openai_embedding, hf_embedding_model = pickle.load(f)
else:
# migration, assume defaults
use_openai_embedding, hf_embedding_model = False, "sentence-transformers/all-MiniLM-L6-v2"
return use_openai_embedding, hf_embedding_model
def get_persist_directory(langchain_mode):
return 'db_dir_%s' % langchain_mode # single place, no special names for each case
def _make_db(use_openai_embedding=False,
hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2",
first_para=False, text_limit=None,
chunk=True, chunk_size=512,
langchain_mode=None,
user_path=None,
db_type='faiss',
load_db_if_exists=True,
db=None,
n_jobs=-1,
verbose=False):
persist_directory = get_persist_directory(langchain_mode)
# see if can get persistent chroma db
db_trial = get_existing_db(db, persist_directory, load_db_if_exists, db_type, use_openai_embedding, langchain_mode,
hf_embedding_model, verbose=verbose)
if db_trial is not None:
db = db_trial
sources = []
if not db and langchain_mode not in ['MyData'] or \
user_path is not None and \
langchain_mode in ['UserData']:
# Should not make MyData db this way, why avoided, only upload from UI
assert langchain_mode not in ['MyData'], "Should not make MyData db this way"
if verbose:
if langchain_mode in ['UserData']:
if user_path is not None:
print("Checking if changed or new sources in %s, and generating sources them" % user_path,
flush=True)
elif db is None:
print("user_path not passed and no db, no sources", flush=True)
else:
print("user_path not passed, using only existing db, no new sources", flush=True)
else:
print("Generating %s sources" % langchain_mode, flush=True)
if langchain_mode in ['wiki_full', 'All', "'All'"]:
from read_wiki_full import get_all_documents
small_test = None
print("Generating new wiki", flush=True)
sources1 = get_all_documents(small_test=small_test, n_jobs=os.cpu_count() // 2)
print("Got new wiki", flush=True)
if chunk:
sources1 = chunk_sources(sources1, chunk=chunk, chunk_size=chunk_size)
print("Chunked new wiki", flush=True)
sources.extend(sources1)
if langchain_mode in ['wiki', 'All', "'All'"]:
sources1 = get_wiki_sources(first_para=first_para, text_limit=text_limit)
if chunk:
sources1 = chunk_sources(sources1, chunk=chunk, chunk_size=chunk_size)
sources.extend(sources1)
if langchain_mode in ['github h2oGPT', 'All', "'All'"]:
# sources = get_github_docs("dagster-io", "dagster")
sources1 = get_github_docs("h2oai", "h2ogpt")
# FIXME: always chunk for now
sources1 = chunk_sources(sources1, chunk=chunk, chunk_size=chunk_size)
sources.extend(sources1)
if langchain_mode in ['DriverlessAI docs', 'All', "'All'"]:
sources1 = get_dai_docs(from_hf=True)
if chunk and False: # FIXME: DAI docs are already chunked well, should only chunk more if over limit
sources1 = chunk_sources(sources1, chunk=chunk, chunk_size=chunk_size)
sources.extend(sources1)
if langchain_mode in ['All', 'UserData']:
if user_path:
if db is not None:
# NOTE: Ignore file names for now, only go by hash ids
# existing_files = get_existing_files(db)
existing_files = []
existing_hash_ids = get_existing_hash_ids(db)
else:
# pretend no existing files so won't filter
existing_files = []
existing_hash_ids = []
# chunk internally for speed over multiple docs
# FIXME: If first had old Hash=None and switch embeddings,
# then re-embed, and then hit here and reload so have hash, and then re-embed.
sources1 = path_to_docs(user_path, n_jobs=n_jobs, chunk=chunk, chunk_size=chunk_size,
existing_files=existing_files, existing_hash_ids=existing_hash_ids)
new_metadata_sources = set([x.metadata['source'] for x in sources1])
if new_metadata_sources:
print("Loaded %s new files as sources to add to UserData" % len(new_metadata_sources), flush=True)
if verbose:
print("Files added: %s" % '\n'.join(new_metadata_sources), flush=True)
sources.extend(sources1)
print("Loaded %s sources for potentially adding to UserData" % len(sources), flush=True)
else:
print("Chose UserData but user_path is empty/None", flush=True)
if False and langchain_mode in ['urls', 'All', "'All'"]:
# from langchain.document_loaders import UnstructuredURLLoader
# loader = UnstructuredURLLoader(urls=urls)
urls = ["https://www.birdsongsf.com/who-we-are/"]
from langchain.document_loaders import PlaywrightURLLoader
loader = PlaywrightURLLoader(urls=urls, remove_selectors=["header", "footer"])
sources1 = loader.load()
sources.extend(sources1)
if not sources:
if verbose:
if db is not None:
print("langchain_mode %s has no new sources, nothing to add to db" % langchain_mode, flush=True)
else:
print("langchain_mode %s has no sources, not making new db" % langchain_mode, flush=True)
return db, 0, []
if verbose:
if db is not None:
print("Generating db", flush=True)
else:
print("Adding to db", flush=True)
if not db:
if sources:
db = get_db(sources, use_openai_embedding=use_openai_embedding, db_type=db_type,
persist_directory=persist_directory, langchain_mode=langchain_mode,
hf_embedding_model=hf_embedding_model)
if verbose:
print("Generated db", flush=True)
else:
print("Did not generate db since no sources", flush=True)
new_sources_metadata = [x.metadata for x in sources]
elif user_path is not None and langchain_mode in ['UserData']:
print("Existing db, potentially adding %s sources from user_path=%s" % (len(sources), user_path), flush=True)
db, num_new_sources, new_sources_metadata = add_to_db(db, sources, db_type=db_type,
use_openai_embedding=use_openai_embedding,
hf_embedding_model=hf_embedding_model)
print("Existing db, added %s new sources from user_path=%s" % (num_new_sources, user_path), flush=True)
else:
new_sources_metadata = [x.metadata for x in sources]
return db, len(new_sources_metadata), new_sources_metadata
def get_existing_files(db):
collection = db.get()
metadata_sources = set([x['source'] for x in collection['metadatas']])
return metadata_sources
def get_existing_hash_ids(db):
collection = db.get()
# assume consistency, that any prior hashed source was single hashed file at the time among all source chunks
metadata_hash_ids = {x['source']: x.get('hashid') for x in collection['metadatas']}
return metadata_hash_ids
source_prefix = "Sources [Score | Link]:"
source_postfix = "End Sources<p>"
def run_qa_db(**kwargs):
func_names = list(inspect.signature(_run_qa_db).parameters)
# hard-coded defaults
kwargs['answer_with_sources'] = True
kwargs['sanitize_bot_response'] = True
kwargs['show_rank'] = False
missing_kwargs = [x for x in func_names if x not in kwargs]
assert not missing_kwargs, "Missing kwargs: %s" % missing_kwargs
# only keep actual used
kwargs = {k: v for k, v in kwargs.items() if k in func_names}
try:
return _run_qa_db(**kwargs)
finally:
clear_torch_cache()
def _run_qa_db(query=None,
use_openai_model=False, use_openai_embedding=False,
first_para=False, text_limit=None, top_k_docs=4, chunk=True, chunk_size=512,
user_path=None,
detect_user_path_changes_every_query=False,
db_type='faiss',
model_name=None, model=None, tokenizer=None,
hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2",
stream_output=False,
prompter=None,
prompt_type=None,
prompt_dict=None,
answer_with_sources=True,
cut_distanct=1.1,
sanitize_bot_response=True,
show_rank=False,
load_db_if_exists=False,
db=None,
max_new_tokens=256,
temperature=0.1,
repetition_penalty=1.0,
top_k=40,
top_p=0.7,
langchain_mode=None,
document_choice=[DocumentChoices.All_Relevant.name],
n_jobs=-1,
verbose=False,
cli=False):
"""
:param query:
:param use_openai_model:
:param use_openai_embedding:
:param first_para:
:param text_limit:
:param k:
:param chunk:
:param chunk_size:
:param user_path: user path to glob recursively from
:param db_type: 'faiss' for in-memory db or 'chroma' or 'weaviate' for persistent db
:param model_name: model name, used to switch behaviors
:param model: pre-initialized model, else will make new one
:param tokenizer: pre-initialized tokenizer, else will make new one. Required not None if model is not None
:param answer_with_sources
:return:
"""
assert query is not None
assert prompter is not None or prompt_type is not None or model is None # if model is None, then will generate
if prompter is not None:
prompt_type = prompter.prompt_type
prompt_dict = prompter.prompt_dict
if model is not None:
assert prompt_type is not None
if prompt_type == PromptType.custom.name:
assert prompt_dict is not None # should at least be {} or ''
else:
prompt_dict = ''
llm, model_name, streamer, prompt_type_out = get_llm(use_openai_model=use_openai_model, model_name=model_name,
model=model, tokenizer=tokenizer,
stream_output=stream_output,
max_new_tokens=max_new_tokens,
temperature=temperature,
repetition_penalty=repetition_penalty,
top_k=top_k,
top_p=top_p,
prompt_type=prompt_type,
prompt_dict=prompt_dict,
prompter=prompter,
verbose=verbose,
)
if model_name in non_hf_types:
# FIXME: for now, streams to stdout/stderr currently
stream_output = False
use_context = False
scores = []
chain = None
if isinstance(document_choice, str):
# support string as well
document_choice = [document_choice]
# get first DocumentChoices as command to use, ignore others
doc_choices_set = set([x.name for x in list(DocumentChoices)])
cmd = [x for x in document_choice if x in doc_choices_set]
cmd = None if len(cmd) == 0 else cmd[0]
# now have cmd, filter out for only docs
document_choice = [x for x in document_choice if x not in doc_choices_set]
func_names = list(inspect.signature(get_similarity_chain).parameters)
sim_kwargs = {k: v for k, v in locals().items() if k in func_names}
missing_kwargs = [x for x in func_names if x not in sim_kwargs]
assert not missing_kwargs, "Missing: %s" % missing_kwargs
docs, chain, scores, use_context = get_similarity_chain(**sim_kwargs)
if cmd in [DocumentChoices.All_Relevant_Only_Sources.name, DocumentChoices.Only_All_Sources.name]:
formatted_doc_chunks = '\n\n'.join([get_url(x) + '\n\n' + x.page_content for x in docs])
yield formatted_doc_chunks, ''
return
if chain is None and model_name not in non_hf_types:
# can only return if HF type
return
if stream_output:
answer = None
assert streamer is not None
import queue
bucket = queue.Queue()
thread = EThread(target=chain, streamer=streamer, bucket=bucket)
thread.start()
outputs = ""
prompt = None # FIXME
try:
for new_text in streamer:
# print("new_text: %s" % new_text, flush=True)
if bucket.qsize() > 0 or thread.exc:
thread.join()
outputs += new_text
if prompter: # and False: # FIXME: pipeline can already use prompter
output1 = prompter.get_response(outputs, prompt=prompt,
sanitize_bot_response=sanitize_bot_response)
yield output1, ''
else:
yield outputs, ''
except BaseException:
# if any exception, raise that exception if was from thread, first
if thread.exc:
raise thread.exc
raise
finally:
# in case no exception and didn't join with thread yet, then join
if not thread.exc:
answer = thread.join()
# in case raise StopIteration or broke queue loop in streamer, but still have exception
if thread.exc:
raise thread.exc
# FIXME: answer is not string outputs from streamer. How to get actual final output?
# answer = outputs
else:
answer = chain()
if not use_context:
ret = answer['output_text']
extra = ''
yield ret, extra
elif answer is not None:
ret, extra = get_sources_answer(query, answer, scores, show_rank, answer_with_sources, verbose=verbose)
yield ret, extra
return
def get_similarity_chain(query=None,
use_openai_model=False, use_openai_embedding=False,
first_para=False, text_limit=None, top_k_docs=4, chunk=True, chunk_size=512,
user_path=None,
detect_user_path_changes_every_query=False,
db_type='faiss',
model_name=None,
hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2",
prompt_type=None,
prompt_dict=None,
cut_distanct=1.1,
load_db_if_exists=False,
db=None,
langchain_mode=None,
document_choice=[DocumentChoices.All_Relevant.name],
n_jobs=-1,
# beyond run_db_query:
llm=None,
verbose=False,
cmd=None,
):
# determine whether use of context out of docs is planned
if not use_openai_model and prompt_type not in ['plain'] or model_name in non_hf_types:
if langchain_mode in ['Disabled', 'ChatLLM', 'LLM']:
use_context = False
else:
use_context = True
else:
use_context = True
# https://github.com/hwchase17/langchain/issues/1946
# FIXME: Seems to way to get size of chroma db to limit top_k_docs to avoid
# Chroma collection MyData contains fewer than 4 elements.
# type logger error
k_db = 1000 if db_type == 'chroma' else top_k_docs # top_k_docs=100 works ok too for
# FIXME: For All just go over all dbs instead of a separate db for All
if not detect_user_path_changes_every_query and db is not None:
# avoid looking at user_path during similarity search db handling,
# if already have db and not updating from user_path every query
# but if db is None, no db yet loaded (e.g. from prep), so allow user_path to be whatever it was
user_path = None
db, num_new_sources, new_sources_metadata = make_db(use_openai_embedding=use_openai_embedding,
hf_embedding_model=hf_embedding_model,
first_para=first_para, text_limit=text_limit,
chunk=chunk,
chunk_size=chunk_size,
langchain_mode=langchain_mode,
user_path=user_path,
db_type=db_type,
load_db_if_exists=load_db_if_exists,
db=db,
n_jobs=n_jobs,
verbose=verbose)
if db and use_context:
if not isinstance(db, Chroma):
# only chroma supports filtering
filter_kwargs = {}
else:
# if here then some cmd + documents selected or just documents selected
if len(document_choice) >= 2:
or_filter = [{"source": {"$eq": x}} for x in document_choice]
filter_kwargs = dict(filter={"$or": or_filter})
elif len(document_choice) == 1:
# degenerate UX bug in chroma
one_filter = [{"source": {"$eq": x}} for x in document_choice][0]
filter_kwargs = dict(filter=one_filter)
else:
# shouldn't reach
filter_kwargs = {}
if cmd == DocumentChoices.Just_LLM.name:
docs = []
scores = []
elif cmd == DocumentChoices.Only_All_Sources.name:
if isinstance(db, Chroma):
db_get = db._collection.get(where=filter_kwargs.get('filter'))
else:
db_get = db.get()
# similar to langchain's chroma's _results_to_docs_and_scores
docs_with_score = [(Document(page_content=result[0], metadata=result[1] or {}), 0)
for result in zip(db_get['documents'], db_get['metadatas'])][:top_k_docs]
docs = [x[0] for x in docs_with_score]
scores = [x[1] for x in docs_with_score]
else:
docs_with_score = db.similarity_search_with_score(query, k=k_db, **filter_kwargs)[:top_k_docs]
# cut off so no high distance docs/sources considered
docs = [x[0] for x in docs_with_score if x[1] < cut_distanct]
scores = [x[1] for x in docs_with_score if x[1] < cut_distanct]
if len(scores) > 0 and verbose:
print("Distance: min: %s max: %s mean: %s median: %s" %
(scores[0], scores[-1], np.mean(scores), np.median(scores)), flush=True)
else:
docs = []
scores = []
if not docs and use_context and model_name not in non_hf_types:
# if HF type and have no docs, can bail out
return docs, None, [], False
if cmd in [DocumentChoices.All_Relevant_Only_Sources.name, DocumentChoices.Only_All_Sources.name]:
# no LLM use
return docs, None, [], False
common_words_file = "data/NGSL_1.2_stats.csv.zip"
if os.path.isfile(common_words_file):
df = pd.read_csv("data/NGSL_1.2_stats.csv.zip")
import string
reduced_query = query.translate(str.maketrans(string.punctuation, ' ' * len(string.punctuation))).strip()
reduced_query_words = reduced_query.split(' ')
set_common = set(df['Lemma'].values.tolist())
num_common = len([x.lower() in set_common for x in reduced_query_words])
frac_common = num_common / len(reduced_query) if reduced_query else 0
# FIXME: report to user bad query that uses too many common words
if verbose:
print("frac_common: %s" % frac_common, flush=True)
if len(docs) == 0:
# avoid context == in prompt then
use_context = False
if not use_openai_model and prompt_type not in ['plain'] or model_name in non_hf_types:
# instruct-like, rather than few-shot prompt_type='plain' as default
# but then sources confuse the model with how inserted among rest of text, so avoid
prefix = ""
if langchain_mode in ['Disabled', 'ChatLLM', 'LLM'] or not use_context:
template = """%s{context}{question}""" % prefix
else:
template = """%s
==
{context}
==
{question}""" % prefix
prompt = PromptTemplate(
# input_variables=["summaries", "question"],
input_variables=["context", "question"],
template=template,
)
chain = load_qa_chain(llm, prompt=prompt)
else:
chain = load_qa_with_sources_chain(llm)
if not use_context:
chain_kwargs = dict(input_documents=[], question=query)
else:
chain_kwargs = dict(input_documents=docs, question=query)
target = wrapped_partial(chain, chain_kwargs)
return docs, target, scores, use_context
def get_sources_answer(query, answer, scores, show_rank, answer_with_sources, verbose=False):
if verbose:
print("query: %s" % query, flush=True)
print("answer: %s" % answer['output_text'], flush=True)
if len(answer['input_documents']) == 0:
extra = ''
ret = answer['output_text'] + extra
return ret, extra
# link
answer_sources = [(max(0.0, 1.5 - score) / 1.5, get_url(doc)) for score, doc in
zip(scores, answer['input_documents'])]
answer_sources_dict = defaultdict(list)
[answer_sources_dict[url].append(score) for score, url in answer_sources]
answers_dict = {}
for url, scores_url in answer_sources_dict.items():
answers_dict[url] = np.max(scores_url)
answer_sources = [(score, url) for url, score in answers_dict.items()]
answer_sources.sort(key=lambda x: x[0], reverse=True)
if show_rank:
# answer_sources = ['%d | %s' % (1 + rank, url) for rank, (score, url) in enumerate(answer_sources)]
# sorted_sources_urls = "Sources [Rank | Link]:<br>" + "<br>".join(answer_sources)
answer_sources = ['%s' % url for rank, (score, url) in enumerate(answer_sources)]
sorted_sources_urls = "Ranked Sources:<br>" + "<br>".join(answer_sources)
else:
answer_sources = ['<li>%.2g | %s</li>' % (score, url) for score, url in answer_sources]
sorted_sources_urls = f"{source_prefix}<p><ul>" + "<p>".join(answer_sources)
sorted_sources_urls += f"</ul></p>{source_postfix}"
if not answer['output_text'].endswith('\n'):
answer['output_text'] += '\n'
if answer_with_sources:
extra = '\n' + sorted_sources_urls
else:
extra = ''
ret = answer['output_text'] + extra
return ret, extra
def chunk_sources(sources, chunk=True, chunk_size=512):
if not chunk:
return sources
source_chunks = []
# Below for known separator
# splitter = CharacterTextSplitter(separator=" ", chunk_size=chunk_size, chunk_overlap=0)
splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=0)
for source in sources:
# print(source.metadata['source'], flush=True)
for chunky in splitter.split_text(source.page_content):
source_chunks.append(Document(page_content=chunky, metadata=source.metadata))
return source_chunks
def get_db_from_hf(dest=".", db_dir='db_dir_DriverlessAI_docs.zip'):
from huggingface_hub import hf_hub_download
# True for case when locally already logged in with correct token, so don't have to set key
token = os.getenv('HUGGINGFACE_API_TOKEN', True)
path_to_zip_file = hf_hub_download('h2oai/db_dirs', db_dir, token=token, repo_type='dataset')
import zipfile
with zipfile.ZipFile(path_to_zip_file, 'r') as zip_ref:
persist_directory = os.path.dirname(zip_ref.namelist()[0])
remove(persist_directory)
zip_ref.extractall(dest)
return path_to_zip_file
# Note dir has space in some cases, while zip does not
some_db_zips = [['db_dir_DriverlessAI_docs.zip', 'db_dir_DriverlessAI docs', 'CC-BY-NC license'],
['db_dir_UserData.zip', 'db_dir_UserData', 'CC-BY license for ArXiv'],
['db_dir_github_h2oGPT.zip', 'db_dir_github h2oGPT', 'ApacheV2 license'],
['db_dir_wiki.zip', 'db_dir_wiki', 'CC-BY-SA Wikipedia license'],
# ['db_dir_wiki_full.zip', 'db_dir_wiki_full.zip', '23GB, 05/04/2023 CC-BY-SA Wiki license'],
]
all_db_zips = some_db_zips + \
[['db_dir_wiki_full.zip', 'db_dir_wiki_full.zip', '23GB, 05/04/2023 CC-BY-SA Wiki license'],
]
def get_some_dbs_from_hf(dest='.', db_zips=None):
if db_zips is None:
db_zips = some_db_zips
for db_dir, dir_expected, license1 in db_zips:
path_to_zip_file = get_db_from_hf(dest=dest, db_dir=db_dir)
assert os.path.isfile(path_to_zip_file), "Missing zip in %s" % path_to_zip_file
if dir_expected:
assert os.path.isdir(os.path.join(dest, dir_expected)), "Missing path for %s" % dir_expected
assert os.path.isdir(os.path.join(dest, dir_expected, 'index')), "Missing index in %s" % dir_expected
def _create_local_weaviate_client():
WEAVIATE_URL = os.getenv('WEAVIATE_URL', "http://localhost:8080")
WEAVIATE_USERNAME = os.getenv('WEAVIATE_USERNAME')
WEAVIATE_PASSWORD = os.getenv('WEAVIATE_PASSWORD')
WEAVIATE_SCOPE = os.getenv('WEAVIATE_SCOPE', "offline_access")
resource_owner_config = None
if WEAVIATE_USERNAME is not None and WEAVIATE_PASSWORD is not None:
resource_owner_config = weaviate.AuthClientPassword(
username=WEAVIATE_USERNAME,
password=WEAVIATE_PASSWORD,
scope=WEAVIATE_SCOPE
)
try:
client = weaviate.Client(WEAVIATE_URL, auth_client_secret=resource_owner_config)
except Exception as e:
print(f"Failed to create Weaviate client: {e}")
return None
if __name__ == '__main__':
pass
|