Spaces:
Runtime error
Runtime error
File size: 9,142 Bytes
eeb7ca1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import os
from transformers import TextGenerationPipeline
from transformers.pipelines.text_generation import ReturnType
from stopping import get_stopping
from prompter import Prompter, PromptType
class H2OTextGenerationPipeline(TextGenerationPipeline):
def __init__(self, *args, debug=False, chat=False, stream_output=False,
sanitize_bot_response=True,
use_prompter=True, prompter=None,
prompt_type=None, prompt_dict=None,
max_input_tokens=2048 - 256, **kwargs):
"""
HF-like pipeline, but handle instruction prompting and stopping (for some models)
:param args:
:param debug:
:param chat:
:param stream_output:
:param sanitize_bot_response:
:param use_prompter: Whether to use prompter. If pass prompt_type, will make prompter
:param prompter: prompter, can pass if have already
:param prompt_type: prompt_type, e.g. human_bot. See prompt_type to model mapping in from prompter.py.
If use_prompter, then will make prompter and use it.
:param prompt_dict: dict of get_prompt(, return_dict=True) for prompt_type=custom
:param max_input_tokens:
:param kwargs:
"""
super().__init__(*args, **kwargs)
self.prompt_text = None
self.use_prompter = use_prompter
self.prompt_type = prompt_type
self.prompt_dict = prompt_dict
self.prompter = prompter
if self.use_prompter:
if self.prompter is not None:
assert self.prompter.prompt_type is not None
else:
self.prompter = Prompter(self.prompt_type, self.prompt_dict, debug=debug, chat=chat,
stream_output=stream_output)
self.human = self.prompter.humanstr
self.bot = self.prompter.botstr
self.can_stop = True
else:
self.prompter = None
self.human = None
self.bot = None
self.can_stop = False
self.sanitize_bot_response = sanitize_bot_response
self.max_input_tokens = max_input_tokens # not for generate, so ok that not kwargs
def preprocess(self, prompt_text, prefix="", handle_long_generation=None, **generate_kwargs):
if hasattr(self.tokenizer, 'model_max_length'):
# model_max_length only defined for generate.py, not raw use of h2oai_pipeline.py
model_max_length = self.tokenizer.model_max_length
else:
# unknown
model_max_length = None
verbose = bool(int(os.getenv('VERBOSE_PIPELINE', '0')))
if model_max_length is not None:
num_prompt_tokens = None
# can't wait for "hole" if not plain prompt_type, since would lose prefix like <human>:
# For https://github.com/h2oai/h2ogpt/issues/192
for trial in range(0, 3):
prompt_tokens = self.tokenizer(prompt_text)['input_ids']
num_prompt_tokens = len(prompt_tokens)
if num_prompt_tokens > model_max_length:
# conservative by using int()
chars_per_token = int(len(prompt_text) / num_prompt_tokens)
prompt_text = prompt_text[-model_max_length * chars_per_token:]
if verbose:
print("reducing %s tokens, assuming average of %s chars/token for %s characters" % (
num_prompt_tokens, chars_per_token, len(prompt_text)), flush=True)
else:
if verbose:
print("using %s tokens with %s chars" % (num_prompt_tokens, len(prompt_text)), flush=True)
break
# if input prompt is some number of tokens, despite user request, can't have max_new_tokens more
#
if self.prompt_type not in [PromptType.plain.name, PromptType.plain.value]:
# then give room for prompt
fudge = 20
else:
fudge = 0
assert num_prompt_tokens is not None
max_new_tokens = max(0, min(generate_kwargs['max_new_tokens'],
model_max_length - (num_prompt_tokens + fudge)))
if max_new_tokens < generate_kwargs['max_new_tokens']:
if verbose:
print("Reduced max_new_tokens from %s -> %s" % (generate_kwargs['max_new_tokens'], max_new_tokens))
generate_kwargs['max_new_tokens'] = max_new_tokens
data_point = dict(context='', instruction=prompt_text, input='')
if self.prompter is not None:
prompt_text = self.prompter.generate_prompt(data_point)
self.prompt_text = prompt_text
if handle_long_generation is None:
# forces truncation of inputs to avoid critical failure
handle_long_generation = 'hole'
return super().preprocess(prompt_text, prefix=prefix, handle_long_generation=handle_long_generation,
**generate_kwargs)
def postprocess(self, model_outputs, return_type=ReturnType.FULL_TEXT, clean_up_tokenization_spaces=True):
records = super().postprocess(model_outputs, return_type=return_type,
clean_up_tokenization_spaces=clean_up_tokenization_spaces)
for rec in records:
if self.use_prompter:
outputs = rec['generated_text']
outputs = self.prompter.get_response(outputs, prompt=self.prompt_text,
sanitize_bot_response=self.sanitize_bot_response)
elif self.bot and self.human:
outputs = rec['generated_text'].split(self.bot)[1].strip().split(self.human)[0].strip()
else:
outputs = rec['generated_text']
rec['generated_text'] = outputs
return records
def _forward(self, model_inputs, **generate_kwargs):
if self.can_stop:
stopping_criteria = get_stopping(self.prompt_type, self.prompt_dict,
self.tokenizer, self.device,
human=self.human, bot=self.bot)
generate_kwargs['stopping_criteria'] = stopping_criteria
# return super()._forward(model_inputs, **generate_kwargs)
return self.__forward(model_inputs, **generate_kwargs)
# FIXME: Copy-paste of original _forward, but removed copy.deepcopy()
# FIXME: https://github.com/h2oai/h2ogpt/issues/172
def __forward(self, model_inputs, **generate_kwargs):
input_ids = model_inputs["input_ids"]
attention_mask = model_inputs.get("attention_mask", None)
# Allow empty prompts
if input_ids.shape[1] == 0:
input_ids = None
attention_mask = None
in_b = 1
else:
in_b = input_ids.shape[0]
prompt_text = model_inputs.pop("prompt_text")
## If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying
## generate_kwargs, as some of the parameterization may come from the initialization of the pipeline.
# generate_kwargs = copy.deepcopy(generate_kwargs)
prefix_length = generate_kwargs.pop("prefix_length", 0)
if prefix_length > 0:
has_max_new_tokens = "max_new_tokens" in generate_kwargs or (
"generation_config" in generate_kwargs
and generate_kwargs["generation_config"].max_new_tokens is not None
)
if not has_max_new_tokens:
generate_kwargs["max_length"] = generate_kwargs.get("max_length") or self.model.config.max_length
generate_kwargs["max_length"] += prefix_length
has_min_new_tokens = "min_new_tokens" in generate_kwargs or (
"generation_config" in generate_kwargs
and generate_kwargs["generation_config"].min_new_tokens is not None
)
if not has_min_new_tokens and "min_length" in generate_kwargs:
generate_kwargs["min_length"] += prefix_length
# BS x SL
generated_sequence = self.model.generate(input_ids=input_ids, attention_mask=attention_mask, **generate_kwargs)
out_b = generated_sequence.shape[0]
if self.framework == "pt":
generated_sequence = generated_sequence.reshape(in_b, out_b // in_b, *generated_sequence.shape[1:])
elif self.framework == "tf":
from transformers import is_tf_available
if is_tf_available():
import tensorflow as tf
generated_sequence = tf.reshape(generated_sequence,
(in_b, out_b // in_b, *generated_sequence.shape[1:]))
else:
raise ValueError("TF not avaialble.")
return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text}
|