File size: 10,569 Bytes
8e55e0f
176edce
 
 
 
 
 
 
 
 
 
 
 
343fdaf
 
176edce
ed16a16
176edce
343fdaf
d0c42ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f22587
d0c42ea
 
 
 
 
 
 
 
6f22587
 
d0c42ea
 
 
 
 
 
 
 
 
 
 
 
176edce
 
 
 
 
 
 
 
 
343fdaf
176edce
 
d2e8c36
3faf629
 
 
25fcbe9
3faf629
25fcbe9
3faf629
 
 
 
 
 
 
87b0e6b
3faf629
 
 
e40e5f1
 
176edce
 
3faf629
 
 
 
 
 
 
6709f9a
3faf629
6709f9a
343fdaf
3ec2621
 
 
 
016778b
 
3ec2621
 
 
7b9b23e
 
 
3ec2621
7b9b23e
 
 
 
 
3ec2621
7b9b23e
 
 
 
 
 
 
87b0e6b
7b9b23e
 
 
3ec2621
7b9b23e
 
 
 
3ec2621
 
 
 
 
 
 
 
 
 
 
 
 
 
343fdaf
3ec2621
 
 
6709f9a
3ec2621
 
 
 
 
 
016778b
 
1b0733f
343fdaf
3ec2621
 
 
aba7c6b
3ec2621
343fdaf
176edce
3ec2621
a83cac7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e55e0f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import spaces
import argparse
import os
import time
from os import path
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download

cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path

import gradio as gr
import torch
from diffusers import FluxPipeline

torch.backends.cuda.matmul.allow_tf32 = True



base_model_id = "Freepik/flux.1-lite-8B-alpha"
torch_dtype = torch.bfloat16
device = "cpu"

# Load the pipe
model_id = "Freepik/flux.1-lite-8B-alpha"
pipe = FluxPipeline.from_pretrained(
    model_id, torch_dtype=torch_dtype
).to(device)

# Inference
prompt = "A close-up image of a green alien with fluorescent skin in the middle of a dark purple forest"

guidance_scale = 3.5  # Keep guidance_scale at 3.5
n_steps = 8
seed = 11

with torch.inference_mode():
    image = pipe(
        prompt=prompt,
        generator=torch.Generator(device="cpu").manual_seed(seed),
        num_inference_steps=n_steps,
        guidance_scale=guidance_scale,
        height=512,
        width=512,
    ).images[0]
image.save("output.png")










class timer:
    def __init__(self, method_name="timed process"):
        self.method = method_name
    def __enter__(self):
        self.start = time.time()
        print(f"{self.method} starts")
    def __exit__(self, exc_type, exc_val, exc_tb):
        end = time.time()
        print(f"{self.method} took {str(round(end - self.start, 2))}s")

if not path.exists(cache_path):
    os.makedirs(cache_path, exist_ok=True)
from huggingface_hub import hf_hub_download
import torch

from diffusers import FluxPipeline, FluxTransformer2DModel, GGUFQuantizationConfig
os.system("wget https://huggingface.co/city96/flux.1-lite-8B-alpha-gguf/flux.1-lite-8B-alpha-Q3_K_S.gguf")
ckpt_path = (
    "flux.1-lite-8B-alpha-Q3_K_S.gguf"
)
transformer = FluxTransformer2DModel.from_single_file(
    ckpt_path,
    quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
    torch_dtype=torch.bfloat16,
)
pipe = FluxPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev",
    transformer=transformer,
    torch_dtype=torch.bfloat16,
)
# https://huggingface.co/martintomov/Hyper-FLUX.1-dev-gguf/resolve/main/hyper-flux-16step-Q3_K_M.gguf
#pipe = FluxPipeline.from_pretrained("flux1-schnell-Q3_K_S.gguf")
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
pipe.fuse_lora(lora_scale=0.125)

pipe.enable_model_cpu_offload()
prompt = "A cat holding a sign that says hello world"
image = pipe(prompt, generator=torch.manual_seed(0)).images[0]
image.save("flux-gguf.png")


#pipe.to(device="cpu", dtype=torch.bfloat16)

#hf_hub_download(repo_id="city96/FLUX.1-schnell-gguf", filename="flux1-schnell-Q3_K_S.gguf")

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        <div style="text-align: center; max-width: 650px; margin: 0 auto;">
            <h1 style="font-size: 2.5rem; font-weight: 700; margin-bottom: 1rem; display: contents;">Hyper-FLUX-8steps-LoRA</h1>
            <p style="font-size: 1rem; margin-bottom: 1.5rem;">AutoML team from ByteDance</p>
        </div>
        """
    )

    with gr.Row():
        with gr.Column(scale=3):
            with gr.Group():
                prompt = gr.Textbox(
                    label="Your Image Description",
                    placeholder="E.g., A serene landscape with mountains and a lake at sunset",
                    lines=3
                )
                
                with gr.Accordion("Advanced Settings", open=False):
                    with gr.Group():
                        with gr.Row():
                            height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=1024)
                            width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=1024)
                        
                        with gr.Row():
                            steps = gr.Slider(label="Inference Steps", minimum=6, maximum=25, step=1, value=16)
                            scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5)
                        
                        seed = gr.Number(label="Seed (for reproducibility)", value=3413, precision=0)
                
                generate_btn = gr.Button("Generate Image", variant="primary", scale=1)

        with gr.Column(scale=4):
            output = gr.Image(label="Your Generated Image")
    
    gr.Markdown(
        """
        <div style="max-width: 650px; margin: 2rem auto; padding: 1rem; border-radius: 10px; background-color: #f0f0f0;">
            <h2 style="font-size: 1.5rem; margin-bottom: 1rem;">How to Use</h2>
            <ol style="padding-left: 1.5rem;">
                <li>Enter a detailed description of the image you want to create.</li>
                <li>Adjust advanced settings if desired (tap to expand).</li>
                <li>Tap "Generate Image" and wait for your creation!</li>
            </ol>
            <p style="margin-top: 1rem; font-style: italic;">Tip: Be specific in your description for best results!</p>
        </div>
        """
    )

    @spaces.GPU
    def process_image(height, width, steps, scales, prompt, seed):
        global pipe
        with torch.inference_mode(), torch.autocast("cpu", dtype=torch.bfloat16), timer("inference"):
            return pipe(
                prompt=[prompt],
                generator=torch.Generator().manual_seed(int(seed)),
                num_inference_steps=int(steps),
                guidance_scale=float(scales),
                height=int(height),
                width=int(width),
                max_sequence_length=256
            ).images[0]

    generate_btn.click(
        process_image,
        inputs=[height, width, steps, scales, prompt, seed],
        outputs=output
    )

if __name__ == "__main__":
    demo.launch()
'''
import spaces
import argparse
import os
import time
from os import path
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download

# Setting up cache directories
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path

import gradio as gr
import torch
from diffusers import FluxPipeline

# Remove CUDA-specific settings since this will run on CPU
# torch.backends.cuda.matmul.allow_tf32 = True

class timer:
    def __init__(self, method_name="timed process"):
        self.method = method_name
    def __enter__(self):
        self.start = time.time()
        print(f"{self.method} starts")
    def __exit__(self, exc_type, exc_val, exc_tb):
        end = time.time()
        print(f"{self.method} took {str(round(end - self.start, 2))}s")

if not path.exists(cache_path):
    os.makedirs(cache_path, exist_ok=True)

# Load the model in a CPU-friendly format (use float32 to save memory)
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.float32)
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
pipe.fuse_lora(lora_scale=0.125)

# Switch to CPU and use float32 for inference
pipe.to(device="cpu", dtype=torch.float32)

# Gradio UI setup
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        <div style="text-align: center; max-width: 650px; margin: 0 auto;">
            <h1 style="font-size: 2.5rem; font-weight: 700; margin-bottom: 1rem; display: contents;">Hyper-FLUX-8steps-LoRA</h1>
            <p style="font-size: 1rem; margin-bottom: 1.5rem;">AutoML team from ByteDance</p>
        </div>
        """
    )

    with gr.Row():
        with gr.Column(scale=3):
            with gr.Group():
                prompt = gr.Textbox(
                    label="Your Image Description",
                    placeholder="E.g., A serene landscape with mountains and a lake at sunset",
                    lines=3
                )
                
                with gr.Accordion("Advanced Settings", open=False):
                    with gr.Group():
                        with gr.Row():
                            height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=512)
                            width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=512)
                        
                        with gr.Row():
                            steps = gr.Slider(label="Inference Steps", minimum=6, maximum=25, step=1, value=8)
                            scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5)
                        
                        seed = gr.Number(label="Seed (for reproducibility)", value=3413, precision=0)
                
                generate_btn = gr.Button("Generate Image", variant="primary", scale=1)

        with gr.Column(scale=4):
            output = gr.Image(label="Your Generated Image")
    
    gr.Markdown(
        """
        <div style="max-width: 650px; margin: 2rem auto; padding: 1rem; border-radius: 10px; background-color: #f0f0f0;">
            <h2 style="font-size: 1.5rem; margin-bottom: 1rem;">How to Use</h2>
            <ol style="padding-left: 1.5rem;">
                <li>Enter a detailed description of the image you want to create.</li>
                <li>Adjust advanced settings if desired (tap to expand).</li>
                <li>Tap "Generate Image" and wait for your creation!</li>
            </ol>
            <p style="margin-top: 1rem; font-style: italic;">Tip: Be specific in your description for best results!</p>
        </div>
        """
    )

    # Processing function for CPU execution
    def process_image(height, width, steps, scales, prompt, seed):
        global pipe
        with torch.inference_mode(), timer("inference"):
            return pipe(
                prompt=[prompt],
                generator=torch.Generator().manual_seed(int(seed)),
                num_inference_steps=int(steps),
                guidance_scale=float(scales),
                height=int(height),
                width=int(width),
                max_sequence_length=256
            ).images[0]

    generate_btn.click(
        process_image,
        inputs=[height, width, steps, scales, prompt, seed],
        outputs=output
    )

if __name__ == "__main__":
    demo.launch()'''