Spaces:
Runtime error
Runtime error
File size: 10,569 Bytes
8e55e0f 176edce 343fdaf 176edce ed16a16 176edce 343fdaf d0c42ea 6f22587 d0c42ea 6f22587 d0c42ea 176edce 343fdaf 176edce d2e8c36 3faf629 25fcbe9 3faf629 25fcbe9 3faf629 87b0e6b 3faf629 e40e5f1 176edce 3faf629 6709f9a 3faf629 6709f9a 343fdaf 3ec2621 016778b 3ec2621 7b9b23e 3ec2621 7b9b23e 3ec2621 7b9b23e 87b0e6b 7b9b23e 3ec2621 7b9b23e 3ec2621 343fdaf 3ec2621 6709f9a 3ec2621 016778b 1b0733f 343fdaf 3ec2621 aba7c6b 3ec2621 343fdaf 176edce 3ec2621 a83cac7 8e55e0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import spaces
import argparse
import os
import time
from os import path
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
import gradio as gr
import torch
from diffusers import FluxPipeline
torch.backends.cuda.matmul.allow_tf32 = True
base_model_id = "Freepik/flux.1-lite-8B-alpha"
torch_dtype = torch.bfloat16
device = "cpu"
# Load the pipe
model_id = "Freepik/flux.1-lite-8B-alpha"
pipe = FluxPipeline.from_pretrained(
model_id, torch_dtype=torch_dtype
).to(device)
# Inference
prompt = "A close-up image of a green alien with fluorescent skin in the middle of a dark purple forest"
guidance_scale = 3.5 # Keep guidance_scale at 3.5
n_steps = 8
seed = 11
with torch.inference_mode():
image = pipe(
prompt=prompt,
generator=torch.Generator(device="cpu").manual_seed(seed),
num_inference_steps=n_steps,
guidance_scale=guidance_scale,
height=512,
width=512,
).images[0]
image.save("output.png")
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
if not path.exists(cache_path):
os.makedirs(cache_path, exist_ok=True)
from huggingface_hub import hf_hub_download
import torch
from diffusers import FluxPipeline, FluxTransformer2DModel, GGUFQuantizationConfig
os.system("wget https://huggingface.co/city96/flux.1-lite-8B-alpha-gguf/flux.1-lite-8B-alpha-Q3_K_S.gguf")
ckpt_path = (
"flux.1-lite-8B-alpha-Q3_K_S.gguf"
)
transformer = FluxTransformer2DModel.from_single_file(
ckpt_path,
quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
torch_dtype=torch.bfloat16,
)
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
transformer=transformer,
torch_dtype=torch.bfloat16,
)
# https://huggingface.co/martintomov/Hyper-FLUX.1-dev-gguf/resolve/main/hyper-flux-16step-Q3_K_M.gguf
#pipe = FluxPipeline.from_pretrained("flux1-schnell-Q3_K_S.gguf")
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
pipe.fuse_lora(lora_scale=0.125)
pipe.enable_model_cpu_offload()
prompt = "A cat holding a sign that says hello world"
image = pipe(prompt, generator=torch.manual_seed(0)).images[0]
image.save("flux-gguf.png")
#pipe.to(device="cpu", dtype=torch.bfloat16)
#hf_hub_download(repo_id="city96/FLUX.1-schnell-gguf", filename="flux1-schnell-Q3_K_S.gguf")
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<h1 style="font-size: 2.5rem; font-weight: 700; margin-bottom: 1rem; display: contents;">Hyper-FLUX-8steps-LoRA</h1>
<p style="font-size: 1rem; margin-bottom: 1.5rem;">AutoML team from ByteDance</p>
</div>
"""
)
with gr.Row():
with gr.Column(scale=3):
with gr.Group():
prompt = gr.Textbox(
label="Your Image Description",
placeholder="E.g., A serene landscape with mountains and a lake at sunset",
lines=3
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Group():
with gr.Row():
height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=1024)
width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=1024)
with gr.Row():
steps = gr.Slider(label="Inference Steps", minimum=6, maximum=25, step=1, value=16)
scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5)
seed = gr.Number(label="Seed (for reproducibility)", value=3413, precision=0)
generate_btn = gr.Button("Generate Image", variant="primary", scale=1)
with gr.Column(scale=4):
output = gr.Image(label="Your Generated Image")
gr.Markdown(
"""
<div style="max-width: 650px; margin: 2rem auto; padding: 1rem; border-radius: 10px; background-color: #f0f0f0;">
<h2 style="font-size: 1.5rem; margin-bottom: 1rem;">How to Use</h2>
<ol style="padding-left: 1.5rem;">
<li>Enter a detailed description of the image you want to create.</li>
<li>Adjust advanced settings if desired (tap to expand).</li>
<li>Tap "Generate Image" and wait for your creation!</li>
</ol>
<p style="margin-top: 1rem; font-style: italic;">Tip: Be specific in your description for best results!</p>
</div>
"""
)
@spaces.GPU
def process_image(height, width, steps, scales, prompt, seed):
global pipe
with torch.inference_mode(), torch.autocast("cpu", dtype=torch.bfloat16), timer("inference"):
return pipe(
prompt=[prompt],
generator=torch.Generator().manual_seed(int(seed)),
num_inference_steps=int(steps),
guidance_scale=float(scales),
height=int(height),
width=int(width),
max_sequence_length=256
).images[0]
generate_btn.click(
process_image,
inputs=[height, width, steps, scales, prompt, seed],
outputs=output
)
if __name__ == "__main__":
demo.launch()
'''
import spaces
import argparse
import os
import time
from os import path
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
# Setting up cache directories
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
import gradio as gr
import torch
from diffusers import FluxPipeline
# Remove CUDA-specific settings since this will run on CPU
# torch.backends.cuda.matmul.allow_tf32 = True
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
if not path.exists(cache_path):
os.makedirs(cache_path, exist_ok=True)
# Load the model in a CPU-friendly format (use float32 to save memory)
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.float32)
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
pipe.fuse_lora(lora_scale=0.125)
# Switch to CPU and use float32 for inference
pipe.to(device="cpu", dtype=torch.float32)
# Gradio UI setup
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<h1 style="font-size: 2.5rem; font-weight: 700; margin-bottom: 1rem; display: contents;">Hyper-FLUX-8steps-LoRA</h1>
<p style="font-size: 1rem; margin-bottom: 1.5rem;">AutoML team from ByteDance</p>
</div>
"""
)
with gr.Row():
with gr.Column(scale=3):
with gr.Group():
prompt = gr.Textbox(
label="Your Image Description",
placeholder="E.g., A serene landscape with mountains and a lake at sunset",
lines=3
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Group():
with gr.Row():
height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=512)
width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=512)
with gr.Row():
steps = gr.Slider(label="Inference Steps", minimum=6, maximum=25, step=1, value=8)
scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5)
seed = gr.Number(label="Seed (for reproducibility)", value=3413, precision=0)
generate_btn = gr.Button("Generate Image", variant="primary", scale=1)
with gr.Column(scale=4):
output = gr.Image(label="Your Generated Image")
gr.Markdown(
"""
<div style="max-width: 650px; margin: 2rem auto; padding: 1rem; border-radius: 10px; background-color: #f0f0f0;">
<h2 style="font-size: 1.5rem; margin-bottom: 1rem;">How to Use</h2>
<ol style="padding-left: 1.5rem;">
<li>Enter a detailed description of the image you want to create.</li>
<li>Adjust advanced settings if desired (tap to expand).</li>
<li>Tap "Generate Image" and wait for your creation!</li>
</ol>
<p style="margin-top: 1rem; font-style: italic;">Tip: Be specific in your description for best results!</p>
</div>
"""
)
# Processing function for CPU execution
def process_image(height, width, steps, scales, prompt, seed):
global pipe
with torch.inference_mode(), timer("inference"):
return pipe(
prompt=[prompt],
generator=torch.Generator().manual_seed(int(seed)),
num_inference_steps=int(steps),
guidance_scale=float(scales),
height=int(height),
width=int(width),
max_sequence_length=256
).images[0]
generate_btn.click(
process_image,
inputs=[height, width, steps, scales, prompt, seed],
outputs=output
)
if __name__ == "__main__":
demo.launch()''' |