File size: 4,977 Bytes
e547b24
 
 
 
 
 
 
c9bb8a8
e547b24
 
 
60f3a05
 
 
 
 
 
e547b24
9a93be3
e547b24
 
 
 
4d6cbec
 
 
e547b24
 
 
 
4d6cbec
e547b24
6f5a32e
4d6cbec
e547b24
6f5a32e
4d6cbec
e547b24
 
 
 
 
 
4d6cbec
 
 
 
 
e547b24
 
4d6cbec
e547b24
 
6f5a32e
 
e547b24
 
 
 
4d6cbec
e547b24
 
6f5a32e
e547b24
 
6f5a32e
e547b24
 
c9bb8a8
41cb6d8
4d6cbec
647c088
0469763
 
 
 
 
02f8cfa
 
 
 
bc84ac0
4d6cbec
02f8cfa
 
bc84ac0
4d6cbec
 
 
02f8cfa
 
 
c9bb8a8
4d6cbec
e547b24
02f8cfa
 
4d6cbec
02f8cfa
 
e547b24
4d6cbec
e547b24
387cd80
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import gradio as gr
import requests
import io
import random
import os
import time
from PIL import Image

import json

# Project by Nymbo
from diffusers import DiffusionPipeline

pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img2vid-xt")

prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
image = pipe(prompt).images[0]

API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
timeout = 100

# Function to query the API and return the generated image
def query(prompt, is_negative=False, steps=35, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, width=1024, height=1024):
    if prompt == "" or prompt is None:
        return None

    key = random.randint(0, 999)
    headers = {"Authorization": f"Bearer {API_TOKEN}"}
    # Translate the prompt from Russian to English if necessary
    prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
    print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
    # Add some extra flair to the prompt
    prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
    print(f'\033[1mGeneration {key}:\033[0m {prompt}')
    # Prepare the payload for the API call, including width and height
    payload = {
        "inputs": prompt,
        "is_negative": is_negative,
        "steps": steps,
        "cfg_scale": cfg_scale,
        "seed": seed if seed != -1 else random.randint(1, 1000000000),
        "strength": strength,
        "parameters": {
            "width": width,  # Pass the width to the API
            "height": height  # Pass the height to the API
        }
    }

    # Send the request to the API and handle the response
    response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
    if response.status_code != 200:
        print(f"Error: Failed to get image. Response status: {response.status_code}")
        print(f"Response content: {response.text}")
        if response.status_code == 503:
            raise gr.Error(f"{response.status_code} : The model is being loaded")
        raise gr.Error(f"{response.status_code}")
    try:
        # Convert the response content into an image
        image_bytes = response.content
        image = Image.open(io.BytesIO(image_bytes))
        print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
        return image
    except Exception as e:
        print(f"Error when trying to open the image: {e}")
        return None

# ... (CSS and other code remains the same)
title="<title>FluxiFloXStrot</title>"
# Build the Gradio UI with Blocks
with gr.Blocks() as app:
    gr.HTML(title)

    with gr.Row():
        gr.HTML('<div id="neon-cursor" class="neon-cursor"></div>')
        
    with gr.Column(elem_id="app-container"):
        with gr.Row():
            with gr.Column(elem_id="prompt-container"):
                with gr.Row():
                    text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input")
                
                with gr.Row():
                    with gr.Accordion("Advanced Settings", open=False):
                        negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
                        with gr.Row():
                            width = gr.Slider(label="Width", value=1024, minimum=64, maximum=1216, step=32)
                            height = gr.Slider(label="Height", value=1024, minimum=64, maximum=1216, step=32)
                        steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1)
                        cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
                        strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
                        seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
                        method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])

        with gr.Row():
            text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
        
        with gr.Row():
            image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
        
        text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=image_output)

app.launch(show_api=True, share=False)