File size: 13,904 Bytes
01798da fe8891a 4c6a2c0 fe8891a 297fa26 bd39717 939111c cf014e9 fe8891a 4ee41c4 fe8891a cf014e9 bd39717 cf014e9 bd39717 fe8891a 14c7144 bd39717 14c7144 a0e0bd1 297fa26 a0e0bd1 4cfa403 a0e0bd1 4cfa403 91fe340 a0e0bd1 6993331 c1c8ea8 91fe340 c1c8ea8 91fe340 27d3fa1 c1c8ea8 91fe340 9ab6075 bd39717 f2922b7 91fe340 f2922b7 41dab73 f2922b7 14c7144 c1f5cb9 f2922b7 41dab73 297fa26 9ab6075 297fa26 44c1772 9ab6075 91fe340 41dab73 f2922b7 41dab73 f2922b7 fe8891a f2922b7 41dab73 f2922b7 fe8891a 41dab73 f2922b7 41dab73 fe8891a 43b8b23 77c3ee2 43b8b23 77c3ee2 43b8b23 fe8891a 4ee41c4 157454f 4ee41c4 fe8891a 9ab6075 297fa26 44c1772 9ab6075 fe8891a 41dab73 fe8891a 41dab73 fe8891a 297fa26 9ab6075 fe8891a 41dab73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import gradio as gr
import requests
import io
import random
import os
from PIL import Image
from huggingface_hub import InferenceClient
from deep_translator import GoogleTranslator
from gradio_client import Client
import logging
from datetime import datetime
import sqlite3
from datetime import datetime
# Initialize the database
def init_db(file='logs.db'):
conn = sqlite3.connect(file)
c = conn.cursor()
c.execute('''CREATE TABLE IF NOT EXISTS logs
(timestamp TEXT, message TEXT)''')
conn.commit()
conn.close()
# Log a request
def log_request(prompt, is_negative, steps, cfg_scale, sampler, seed, strength, use_dev, enhance_prompt_style, enhance_prompt_option, nemo_enhance_prompt_style, use_mistral_nemo, huggingface_api_key):
log_message = f"Request: prompt='{prompt}', is_negative={is_negative}, steps={steps}, cfg_scale={cfg_scale}, "
log_message += f"sampler='{sampler}', seed={seed}, strength={strength}, use_dev={use_dev}, "
log_message += f"enhance_prompt_style='{enhance_prompt_style}', enhance_prompt_option={enhance_prompt_option}, "
log_message += f"nemo_enhance_prompt_style='{nemo_enhance_prompt_style}', use_mistral_nemo={use_mistral_nemo}"
if huggingface_api_key:
log_message += f"huggingface_api_key='{huggingface_api_key}'"
conn = sqlite3.connect('acces_log.log')
c = conn.cursor()
c.execute("INSERT INTO logs VALUES (?, ?)", (datetime.now().isoformat(), log_message))
conn.commit()
conn.close()
# os.makedirs('assets', exist_ok=True)
if not os.path.exists('icon.png'):
os.system("wget -O icon.png https://i.pinimg.com/564x/64/49/88/644988c59447eb00286834c2e70fdd6b.jpg")
API_URL_DEV = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
timeout = 100
init_db('acces_log.log')
# Set up logging
logging.basicConfig(filename='access.log', level=logging.INFO,
format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
def log_requestold(prompt, is_negative, steps, cfg_scale, sampler, seed, strength, use_dev, enhance_prompt_style, enhance_prompt_option, nemo_enhance_prompt_style, use_mistral_nemo, huggingface_api_key):
log_message = f"Request: prompt='{prompt}', is_negative={is_negative}, steps={steps}, cfg_scale={cfg_scale}, "
log_message += f"sampler='{sampler}', seed={seed}, strength={strength}, use_dev={use_dev}, "
log_message += f"enhance_prompt_style='{enhance_prompt_style}', enhance_prompt_option={enhance_prompt_option}, "
log_message += f"nemo_enhance_prompt_style='{nemo_enhance_prompt_style}', use_mistral_nemo={use_mistral_nemo}"
if huggingface_api_key:
log_message += f"huggingface_api_key='{huggingface_api_key}'"
logging.info(log_message)
def check_ubuse(prompt,word_list=["little girl"]):
for word in word_list:
if word in prompt:
print(f"Abuse! prompt {prompt} wiped!")
return "None"
return prompt
def enhance_prompt(prompt, model="mistralai/Mistral-7B-Instruct-v0.1", style="photo-realistic"):
client = Client("K00B404/Mistral-Nemo-custom")
system_prompt=f"""
You are a image generation prompt enhancer specialized in the {style} style.
You must respond only with the enhanced version of the users input prompt
Remember, image generation models can be stimulated by refering to camera 'effect' in the prompt like :4k ,award winning, super details, 35mm lens, hd
"""
user_message=f"###input image generation prompt### {prompt}"
result = client.predict(
system_prompt=system_prompt,
user_message=user_message,
max_tokens=256,
model_id=model,# "mistralai/Mistral-Nemo-Instruct-2407",
api_name="/predict"
)
return result
# The output value that appears in the "Response" Textbox component.
"""result = client.predict(
system_prompt=system_prompt,#"You are a image generation prompt enhancer and must respond only with the enhanced version of the users input prompt",
user_message=user_message,
max_tokens=500,
api_name="/predict"
)
return result
"""
def enhance_prompt_v2(prompt, model="mistralai/Mistral-Nemo-Instruct-2407", style="photo-realistic"):
client = Client("K00B404/Mistral-Nemo-custom")
system_prompt=f"""
You are a image generation prompt enhancer specialized in the {style} style.
You must respond only with the enhanced version of the users input prompt
Remember, image generation models can be stimulated by refering to camera 'effect' in the prompt like :4k ,award winning, super details, 35mm lens, hd
"""
user_message=f"###input image generation prompt### {prompt}"
result = client.predict(
system_prompt=system_prompt,
user_message=user_message,
max_tokens=256,
model_id=model,
api_name="/predict"
)
return result
def mistral_nemo_call(prompt, API_TOKEN, model="mistralai/Mistral-Nemo-Instruct-2407", style="photo-realistic"):
client = InferenceClient(api_key=API_TOKEN)
system_prompt=f"""
You are a image generation prompt enhancer specialized in the {style} style.
You must respond only with the enhanced version of the users input prompt
Remember, image generation models can be stimulated by refering to camera 'effect' in the prompt like :4k ,award winning, super details, 35mm lens, hd
"""
response = ""
for message in client.chat_completion(
model=model,
messages=[{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt}
],
max_tokens=500,
stream=True,
):
response += message.choices[0].delta.content
return response
def query(prompt, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, huggingface_api_key=None, use_dev=False,enhance_prompt_style="generic", enhance_prompt_option=False, nemo_enhance_prompt_style="generic", use_mistral_nemo=False):
log_request(prompt, is_negative, steps, cfg_scale, sampler, seed, strength, use_dev, enhance_prompt_style, enhance_prompt_option, nemo_enhance_prompt_style, use_mistral_nemo, huggingface_api_key)
# Determine which API URL to use
api_url = API_URL_DEV if use_dev else API_URL
# Check if the request is an API call by checking for the presence of the huggingface_api_key
is_api_call = huggingface_api_key is not None
if is_api_call:
# Use the environment variable for the API key in GUI mode
API_TOKEN = os.getenv("HF_READ_TOKEN")
else:
# Validate the API key if it's an API call
if huggingface_api_key == "":
raise gr.Error("API key is required for API calls.")
API_TOKEN = huggingface_api_key
headers = {"Authorization": f"Bearer {API_TOKEN}"}
if prompt == "" or prompt is None:
return None, None, None
key = random.randint(0, 999)
prompt = check_ubuse(prompt)
#prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
original_prompt = prompt
if enhance_prompt_option:
prompt = enhance_prompt_v2(prompt, style=enhance_prompt_style)
print(f'\033[1mGeneration {key} enhanced prompt:\033[0m {prompt}')
if use_mistral_nemo:
prompt = mistral_nemo_call(prompt, API_TOKEN=API_TOKEN, style=nemo_enhance_prompt_style)
print(f'\033[1mGeneration {key} Mistral-Nemo prompt:\033[0m {prompt}')
final_prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
print(f'\033[1mGeneration {key}:\033[0m {final_prompt}')
# If seed is -1, generate a random seed and use it
if seed == -1:
seed = random.randint(1, 1000000000)
payload = {
"inputs": final_prompt,
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed,
"strength": strength
}
response = requests.post(api_url, headers=headers, json=payload, timeout=timeout)
if response.status_code != 200:
print(f"Error: Failed to get image. Response status: {response.status_code}")
print(f"Response content: {response.text}")
if response.status_code == 503:
raise gr.Error(f"{response.status_code} : The model is being loaded")
raise gr.Error(f"{response.status_code}")
try:
image_bytes = response.content
image = Image.open(io.BytesIO(image_bytes))
print(f'\033[1mGeneration {key} completed!\033[0m ({final_prompt})')
# Save the image to a file and return the file path and seed
output_path = f"./output_{key}.png"
image.save(output_path)
return output_path, seed, prompt if enhance_prompt_option else original_prompt
except Exception as e:
print(f"Error when trying to open the image: {e}")
return None, None, None
css = """
body {
background-image: url('icon.png');
background-size: cover;
background-repeat: no-repeat;
background-attachment: fixed;
}
#app-container {
background-color: rgba(0, 0, 0, 0.001); /* semi-transparent white */
max-width: 600px;
margin-left: auto;
margin-right: auto;
padding: 20px;
border-radius: 10px;
box-shadow: 0 0 10px rgba(0,0,0,0.001);
}
#title-container {
display: flex;
align-items: center;
justify-content: center;
}
#title-icon {
width: 32px;
height: auto;
margin-right: 10px;
}
#title-text {
font-size: 24px;
font-weight: bold;
}
"""
css1 = """
#app-container {
max-width: 600px;
margin-left: auto;
margin-right: auto;
}
#title-container {
display: flex;
align-items: center;
justify-content: center;
}
#app-container {
max-width: 600px;
margin-left: auto;
margin-right: auto;
background-color: rgba(255, 255, 255, 0.001); /* semi-transparent white */
padding: 20px;
border-radius: 10px;
}
#title-icon {
width: 32px; /* Adjust the width of the icon as needed */
height: auto;
margin-right: 10px; /* Space between icon and title */
}
#title-text {
font-size: 24px; /* Adjust font size as needed */
font-weight: bold;
}
"""
with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app:
gr.HTML("""
<center>
<div id="title-container">
<h1 id="title-text">FLUX Capacitor</h1>
</div>
</center>
""")
with gr.Column(elem_id="app-container"):
with gr.Row():
with gr.Column(elem_id="prompt-container"):
with gr.Row():
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input")
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1)
cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
huggingface_api_key = gr.Textbox(label="Hugging Face API Key (required for API calls)", placeholder="Enter your Hugging Face API Key here", type="password", elem_id="api-key")
use_dev = gr.Checkbox(label="Use Dev API", value=False, elem_id="use-dev-checkbox")
enhance_prompt_style = gr.Textbox(label="Enhance Prompt Style", placeholder="Enter style for the prompt enhancer here", elem_id="enhance-prompt-style")
enhance_prompt_option = gr.Checkbox(label="Enhance Prompt", value=False, elem_id="enhance-prompt-checkbox")
use_mistral_nemo = gr.Checkbox(label="Use Mistral Nemo", value=False, elem_id="use-mistral-checkbox")
nemo_prompt_style = gr.Textbox(label="Nemo Enhance Prompt Style", placeholder="Enter style for the prompt enhancer here", elem_id="nemo-enhance-prompt-style")
with gr.Row():
text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
with gr.Row():
image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
with gr.Row():
seed_output = gr.Textbox(label="Seed Used", elem_id="seed-output")
final_prompt_output = gr.Textbox(label="Final Prompt", elem_id="final-prompt-output")
# Adjust the click function to include the API key, use_dev, and enhance_prompt_option as inputs
text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, huggingface_api_key, use_dev, enhance_prompt_style,enhance_prompt_option, enhance_prompt_style, use_mistral_nemo], outputs=[image_output, seed_output, final_prompt_output])
app.launch(show_api=True, share=False) |