File size: 2,785 Bytes
a174f44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import torch
from diffusers import AnimateDiffSparseControlNetPipeline
from diffusers.models import AutoencoderKL, MotionAdapter, SparseControlNetModel
from diffusers.schedulers import DPMSolverMultistepScheduler
from diffusers.utils import export_to_gif, load_image

torch.backends.cuda.matmul.allow_tf32 = True  # Enable TF32 for speed
device = "cuda"
dtype = torch.float16

# Model IDs
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
motion_adapter_id = "guoyww/animatediff-motion-adapter-v1-5-3"
controlnet_id = "guoyww/animatediff-sparsectrl-scribble"
lora_adapter_id = "guoyww/animatediff-motion-lora-v1-5-3"
vae_id = "stabilityai/sd-vae-ft-mse"

# Load models to device once
motion_adapter = MotionAdapter.from_pretrained(motion_adapter_id, torch_dtype=dtype, device_map="auto")
controlnet = SparseControlNetModel.from_pretrained(controlnet_id, torch_dtype=dtype, device_map="auto")
vae = AutoencoderKL.from_pretrained(vae_id, torch_dtype=dtype, device_map="auto")

# Use DPMSolverMultistepScheduler with optimizations
scheduler = DPMSolverMultistepScheduler.from_pretrained(
    model_id, subfolder="scheduler", beta_schedule="linear",
    algorithm_type="dpmsolver++", use_karras_sigmas=True,
)

pipe = AnimateDiffSparseControlNetPipeline.from_pretrained(
    model_id, motion_adapter=motion_adapter, controlnet=controlnet,
    vae=vae, scheduler=scheduler, torch_dtype=dtype,
).to(device)

# Enable memory optimizations
pipe.enable_xformers_memory_efficient_attention()
pipe.load_lora_weights(lora_adapter_id, adapter_name="motion_lora")
pipe.fuse_lora(lora_scale=1.0)

# Preload conditioning frames
image_files = [
    "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-1.png",
    "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-2.png",
    "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-3.png"
]
condition_frame_indices = [0, 8, 15]
conditioning_frames = [load_image(img) for img in image_files]

# Generator for reproducibility
generator = torch.Generator(device).manual_seed(1337)

# Inference with memory optimizations
with torch.inference_mode():
    video = pipe(
        prompt="an aerial view of a cyberpunk city, night time, neon lights, masterpiece, high quality",
        negative_prompt="low quality, worst quality, letterboxed",
        num_inference_steps=25,
        conditioning_frames=conditioning_frames,
        controlnet_conditioning_scale=1.0,
        controlnet_frame_indices=condition_frame_indices,
        generator=generator,
    ).frames[0]

export_to_gif(video, "output.gif")

# Free memory
del pipe, motion_adapter, controlnet, vae
torch.cuda.empty_cache()