File size: 6,582 Bytes
afda258
 
 
 
fe70bc2
 
 
3f69f5c
 
 
 
afda258
fe70bc2
 
 
afda258
 
 
 
 
 
 
6554f07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afda258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65044cf
2f1cbf2
afda258
5d4c633
afda258
 
 
 
 
 
 
37335e4
afda258
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
from transformers import AutoTokenizer, AutoModel
import clip
import skimage.io as io
import PIL.Image
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AdamW, get_linear_schedule_with_warmup
import os
import pickle
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from torch.nn import functional as F
import pandas as pd
from tqdm import tqdm
from PIL import Image
from typing import Tuple
import numpy as np
import time
import json
import nltk
nltk.download('punkt')


class Adapter(nn.Module):
    def forward(self, x):
        return self.model(x)

    def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh):
        super(Adapter, self).__init__()
        layers = []
        for i in range(len(sizes) -1):
            layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias))
            if i < len(sizes) - 2:
                layers.append(act())
        self.model = nn.Sequential(*layers)



class ClipGPT2Model(nn.Module):
    def __init__(self, img_feature_length, img_feature_size = 512):
        super(ClipGPT2Model, self).__init__()
        self.img_feature_length = img_feature_length
        self.gpt = GPT2LMHeadModel.from_pretrained('gpt2')
        self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1]
        self.clip_project = Adapter((img_feature_size,
                                       (self.gpt_embedding_size * img_feature_length) // 2,
                                       self.gpt_embedding_size * img_feature_length))
    def get_dummy_token(self,
                        batch_size: int,
                        device: torch.device) -> torch.Tensor:
        return torch.zeros(batch_size, self.img_feature_length, dtype=torch.int64, device=device)

    def forward(self,
                tokens: torch.Tensor,
                feature: torch.Tensor,
                mask = None,
                labels = None):

        embedding_text = self.gpt.transformer.wte(tokens)
        feature_projections = self.clip_project(feature).view(-1, self.img_feature_length, self.gpt_embedding_size)
        embedding_cat = torch.cat((feature_projections, embedding_text), dim=1)
        if labels is not None:
            dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device)
            labels = torch.cat((dummy_token, tokens), dim=1)
        out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask)
        return out

        


def generate_beam(
    model,
    tokenizer,
    beam_size: int = 10,
    prompt=None,
    embed=None,
    entry_length=76,
    temperature=0.9,
    stop_token: str = ".",
):

    model.eval()
    stop_token_index = tokenizer.encode(stop_token)[0]
    tokens = None
    scores = None
    device = next(model.parameters()).device
    seq_lengths = torch.ones(beam_size, device=device)
    is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool)
    with torch.no_grad():
        if embed is not None:
            generated = embed
        else:
            if tokens is None:
                tokens = torch.tensor(tokenizer.encode(prompt))
                tokens = tokens.unsqueeze(0).to(device)
                generated = model.gpt.transformer.wte(tokens)
        for i in range(entry_length):
            outputs = model.gpt(inputs_embeds=generated)
            logits = outputs.logits
            logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
            logits = logits.softmax(-1).log()
            if scores is None:
                scores, next_tokens = logits.topk(beam_size, -1)
                generated = generated.expand(beam_size, *generated.shape[1:])
                next_tokens, scores = next_tokens.permute(1, 0), scores.squeeze(0)
                if tokens is None:
                    tokens = next_tokens
                else:
                    tokens = tokens.expand(beam_size, *tokens.shape[1:])
                    tokens = torch.cat((tokens, next_tokens), dim=1)
            else:
                logits[is_stopped] = -float(np.inf)
                logits[is_stopped, 0] = 0
                scores_sum = scores[:, None] + logits
                seq_lengths[~is_stopped] += 1
                scores_sum_average = scores_sum / seq_lengths[:, None]
                scores_sum_average, next_tokens = scores_sum_average.view(-1).topk(
                    beam_size, -1
                )
                next_tokens_source = next_tokens // scores_sum.shape[1]
                seq_lengths = seq_lengths[next_tokens_source]
                next_tokens = next_tokens % scores_sum.shape[1]
                next_tokens = next_tokens.unsqueeze(1)
                tokens = tokens[next_tokens_source]
                tokens = torch.cat((tokens, next_tokens), dim=1)
                generated = generated[next_tokens_source]
                scores = scores_sum_average * seq_lengths
                is_stopped = is_stopped[next_tokens_source]
            next_token_embed = model.gpt.transformer.wte(next_tokens.squeeze()).view(
                generated.shape[0], 1, -1
            )
            generated = torch.cat((generated, next_token_embed), dim=1)
            is_stopped = is_stopped + next_tokens.eq(stop_token_index).squeeze()
            if is_stopped.all():
                break
    scores = scores / seq_lengths
    output_list = tokens.cpu().numpy()
    output_texts = [
        tokenizer.decode(output[: int(length)])
        for output, length in zip(output_list, seq_lengths)
    ]
    order = scores.argsort(descending=True)
    output_texts = [output_texts[i] for i in order]
    return output_texts



def generate_caption_clipgpt(img):

    prefix_length = 10
    model = ClipGPT2Model(prefix_length)
    model.load_state_dict(torch.load('model_train_best_run_clipGPT.pt', map_location=torch.device('cpu')))
    model = model.eval()
    device=torch.device('cpu')
    model = model.to(device)


    clip_model, preprocess = clip.load('ViT-B/32', device, jit=False)
    tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

    start_time = time.time()
    pil_image = PIL.Image.fromarray(img)
    image = preprocess(pil_image).unsqueeze(0).to(device)

    with torch.no_grad():
        prefix = clip_model.encode_image(image).to(device, dtype=torch.float32)
        prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1)
        beam_caption = generate_beam(model, tokenizer, embed=prefix_embed)[0]

    end_time = time.time()
    print("--- Time taken to generate: %s seconds ---" % (end_time - start_time))

    return beam_caption