File size: 20,541 Bytes
d290c84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 |
import torch
import torch.nn as nn
import torchvision
import numpy as np
from torch.autograd import Variable
import torchvision.models as models
import transformers
import torchvision.transforms
import torchxrayvision as xrv
from transformers import ViTModel, ViTConfig
class VisualFeatureExtractor(nn.Module):
def __init__(self, model_name='densenet201', pretrained=False):
super(VisualFeatureExtractor, self).__init__()
self.model_name = 'chexnet'
self.pretrained = pretrained
self.model, self.out_features, self.avg_func, self.bn, self.linear = self.__get_model()
self.activation = nn.ReLU()
def __get_model(self):
model = None
out_features = None
func = None
if self.model_name == 'resnet152':
resnet = models.resnet152(pretrained=self.pretrained)
modules = list(resnet.children())[:-2]
model = nn.Sequential(*modules)
out_features = resnet.fc.in_features
func = torch.nn.AvgPool2d(kernel_size=7, stride=1, padding=0)
elif self.model_name == 'densenet201':
densenet = models.densenet201(pretrained=self.pretrained)
modules = list(densenet.features)
model = nn.Sequential(*modules)
func = torch.nn.AvgPool2d(kernel_size=7, stride=1, padding=0)
out_features = densenet.classifier.in_features
elif self.model_name == 'chexnet':
print("vit chest xray pretrained model loading")
# Load the Vision Transformer (ViT) model configuration
config = ViTConfig.from_pretrained('nickmuchi/vit-finetuned-chest-xray-pneumonia')
# Initialize the ViT model with the specific configuration
vit_model = ViTModel(config)
# Load the state dict specifically, excluding 'classifier.bias', 'classifier.weight'
state_dict = torch.load('vit-coatten/utils/pytorch_model.bin', map_location=torch.device('cpu'))
state_dict = {k: v for k, v in state_dict.items() if not k.startswith('classifier')}
vit_model.load_state_dict(state_dict, strict=False)
model = vit_model
out_features = config.hidden_size
linear = nn.Linear(in_features=out_features, out_features=out_features)
bn = nn.BatchNorm1d(num_features=out_features, momentum=0.1)
return model, out_features, func, bn, linear
def forward(self, images):
"""
:param images: Input images
:return: visual_features, avg_features
"""
model_output = self.model(images)
# Extract the pooler_output
pooler_output = model_output.pooler_output
# Apply the linear layer, batch normalization, and activation
avg_features = self.activation(self.bn(self.linear(pooler_output)))
return model_output.last_hidden_state, avg_features
# def forward(self, images):
# """
# :param images:
# :return:
# """
# visual_features = self.model(images)
# avg_features = self.avg_func(visual_features).squeeze()
# # avg_features = self.activation(self.bn(self.linear(visual_features)))
# return visual_features, avg_features
class MLC(nn.Module):
def __init__(self,
classes=210,
sementic_features_dim=512,
fc_in_features=2048,
k=10,
):
super(MLC, self).__init__()
pretrained_model_name="nickmuchi/vit-finetuned-chest-xray-pneumonia"
vit_config = ViTConfig.from_pretrained(pretrained_model_name)
self.vit = ViTModel(vit_config)
# Adjust the classifier to your number of classes
self.classifier = nn.Linear(in_features=vit_config.hidden_size, out_features=classes)
self.embed = nn.Embedding(classes, sementic_features_dim)
self.k = k
self.sigmoid = nn.Sigmoid()
self.__init_weight()
def __init_weight(self):
nn.init.xavier_uniform_(self.classifier.weight)
if self.classifier.bias is not None:
self.classifier.bias.data.fill_(0)
def forward(self, avg_features):
tags = self.sigmoid(self.classifier(avg_features))
semantic_features = self.embed(torch.topk(tags, self.k)[1])
return tags, semantic_features
# class MLC(nn.Module):
# def __init__(self,
# classes=210,
# sementic_features_dim=512,
# fc_in_features=2048,
# k=10):
# super(MLC, self).__init__()
# self.classifier = nn.Linear(in_features=fc_in_features, out_features=classes)
# self.embed = nn.Embedding(classes, sementic_features_dim)
# self.k = k
# self.sigmoid = nn.Sigmoid()
# self.__init_weight()
# def __init_weight(self):
# # Example: Initialize weights with a different strategy
# nn.init.xavier_uniform_(self.classifier.weight)
# if self.classifier.bias is not None:
# self.classifier.bias.data.fill_(0)
# def forward(self, avg_features):
# tags = self.sigmoid(self.classifier(avg_features))
# semantic_features = self.embed(torch.topk(tags, self.k)[1])
# return tags, semantic_features
class CoAttention(nn.Module):
def __init__(self,
version='v1',
embed_size=512,
hidden_size=512,
visual_size=2048,
k=10,
momentum=0.1):
super(CoAttention, self).__init__()
self.version = version
self.W_v = nn.Linear(in_features=visual_size, out_features=visual_size)
self.bn_v = nn.BatchNorm1d(num_features=visual_size, momentum=momentum)
self.W_v_h = nn.Linear(in_features=hidden_size, out_features=visual_size)
self.bn_v_h = nn.BatchNorm1d(num_features=visual_size, momentum=momentum)
self.W_v_att = nn.Linear(in_features=visual_size, out_features=visual_size)
self.bn_v_att = nn.BatchNorm1d(num_features=visual_size, momentum=momentum)
self.W_a = nn.Linear(in_features=hidden_size, out_features=hidden_size)
self.bn_a = nn.BatchNorm1d(num_features=k, momentum=momentum)
self.W_a_h = nn.Linear(in_features=hidden_size, out_features=hidden_size)
self.bn_a_h = nn.BatchNorm1d(num_features=1, momentum=momentum)
self.W_a_att = nn.Linear(in_features=hidden_size, out_features=hidden_size)
self.bn_a_att = nn.BatchNorm1d(num_features=k, momentum=momentum)
# self.W_fc = nn.Linear(in_features=visual_size, out_features=embed_size) # for v3
self.W_fc = nn.Linear(in_features=visual_size + hidden_size, out_features=embed_size)
self.bn_fc = nn.BatchNorm1d(num_features=embed_size, momentum=momentum)
self.tanh = nn.Tanh()
self.softmax = nn.Softmax()
self.__init_weight()
def __init_weight(self):
self.W_v.weight.data.uniform_(-0.1, 0.1)
self.W_v.bias.data.fill_(0)
self.W_v_h.weight.data.uniform_(-0.1, 0.1)
self.W_v_h.bias.data.fill_(0)
self.W_v_att.weight.data.uniform_(-0.1, 0.1)
self.W_v_att.bias.data.fill_(0)
self.W_a.weight.data.uniform_(-0.1, 0.1)
self.W_a.bias.data.fill_(0)
self.W_a_h.weight.data.uniform_(-0.1, 0.1)
self.W_a_h.bias.data.fill_(0)
self.W_a_att.weight.data.uniform_(-0.1, 0.1)
self.W_a_att.bias.data.fill_(0)
self.W_fc.weight.data.uniform_(-0.1, 0.1)
self.W_fc.bias.data.fill_(0)
def forward(self, avg_features, semantic_features, h_sent):
if self.version == 'v1':
return self.v1(avg_features, semantic_features, h_sent)
elif self.version == 'v2':
return self.v2(avg_features, semantic_features, h_sent)
elif self.version == 'v3':
return self.v3(avg_features, semantic_features, h_sent)
elif self.version == 'v4':
return self.v4(avg_features, semantic_features, h_sent)
elif self.version == 'v5':
return self.v5(avg_features, semantic_features, h_sent)
def v1(self, avg_features, semantic_features, h_sent) -> object:
"""
only training
:rtype: object
"""
W_v = self.bn_v(self.W_v(avg_features))
W_v_h = self.bn_v_h(self.W_v_h(h_sent.squeeze(1)))
alpha_v = self.softmax(self.bn_v_att(self.W_v_att(self.tanh(W_v + W_v_h))))
v_att = torch.mul(alpha_v, avg_features)
W_a_h = self.bn_a_h(self.W_a_h(h_sent))
W_a = self.bn_a(self.W_a(semantic_features))
alpha_a = self.softmax(self.bn_a_att(self.W_a_att(self.tanh(torch.add(W_a_h, W_a)))))
a_att = torch.mul(alpha_a, semantic_features).sum(1)
ctx = self.W_fc(torch.cat([v_att, a_att], dim=1))
return ctx, alpha_v, alpha_a
def v2(self, avg_features, semantic_features, h_sent) -> object:
"""
no bn
:rtype: object
"""
W_v = self.W_v(avg_features)
W_v_h = self.W_v_h(h_sent.squeeze(1))
alpha_v = self.softmax(self.W_v_att(self.tanh(W_v + W_v_h)))
v_att = torch.mul(alpha_v, avg_features)
W_a_h = self.W_a_h(h_sent)
W_a = self.W_a(semantic_features)
alpha_a = self.softmax(self.W_a_att(self.tanh(torch.add(W_a_h, W_a))))
a_att = torch.mul(alpha_a, semantic_features).sum(1)
ctx = self.W_fc(torch.cat([v_att, a_att], dim=1))
return ctx, alpha_v, alpha_a
def v3(self, avg_features, semantic_features, h_sent) -> object:
"""
:rtype: object
"""
W_v = self.bn_v(self.W_v(avg_features))
W_v_h = self.bn_v_h(self.W_v_h(h_sent.squeeze(1)))
alpha_v = self.softmax(self.W_v_att(self.tanh(W_v + W_v_h)))
v_att = torch.mul(alpha_v, avg_features)
W_a_h = self.bn_a_h(self.W_a_h(h_sent))
W_a = self.bn_a(self.W_a(semantic_features))
alpha_a = self.softmax(self.W_a_att(self.tanh(torch.add(W_a_h, W_a))))
a_att = torch.mul(alpha_a, semantic_features).sum(1)
ctx = self.W_fc(torch.cat([v_att, a_att], dim=1))
return ctx, alpha_v, alpha_a
def v4(self, avg_features, semantic_features, h_sent):
W_v = self.W_v(avg_features)
W_v_h = self.W_v_h(h_sent.squeeze(1))
alpha_v = self.softmax(self.W_v_att(self.tanh(torch.add(W_v, W_v_h))))
v_att = torch.mul(alpha_v, avg_features)
W_a_h = self.W_a_h(h_sent)
W_a = self.W_a(semantic_features)
alpha_a = self.softmax(self.W_a_att(self.tanh(torch.add(W_a_h, W_a))))
a_att = torch.mul(alpha_a, semantic_features).sum(1)
ctx = self.W_fc(torch.cat([v_att, a_att], dim=1))
return ctx, alpha_v, alpha_a
def v5(self, avg_features, semantic_features, h_sent):
W_v = self.W_v(avg_features)
W_v_h = self.W_v_h(h_sent.squeeze(1))
alpha_v = self.softmax(self.W_v_att(self.tanh(self.bn_v(torch.add(W_v, W_v_h)))))
v_att = torch.mul(alpha_v, avg_features)
W_a_h = self.W_a_h(h_sent)
W_a = self.W_a(semantic_features)
alpha_a = self.softmax(self.W_a_att(self.tanh(self.bn_a(torch.add(W_a_h, W_a)))))
a_att = torch.mul(alpha_a, semantic_features).sum(1)
ctx = self.W_fc(torch.cat([v_att, a_att], dim=1))
return ctx, alpha_v, alpha_a
class SentenceLSTM(nn.Module):
def __init__(self,
version='v1',
embed_size=512,
hidden_size=512,
num_layers=1,
dropout=0.3,
momentum=0.1):
super(SentenceLSTM, self).__init__()
self.version = version
self.lstm = nn.LSTM(input_size=embed_size,
hidden_size=hidden_size,
num_layers=num_layers,
dropout=dropout)
self.W_t_h = nn.Linear(in_features=hidden_size,
out_features=embed_size,
bias=True)
self.bn_t_h = nn.BatchNorm1d(num_features=1, momentum=momentum)
self.W_t_ctx = nn.Linear(in_features=embed_size,
out_features=embed_size,
bias=True)
self.bn_t_ctx = nn.BatchNorm1d(num_features=1, momentum=momentum)
self.W_stop_s_1 = nn.Linear(in_features=hidden_size,
out_features=embed_size,
bias=True)
self.bn_stop_s_1 = nn.BatchNorm1d(num_features=1, momentum=momentum)
self.W_stop_s = nn.Linear(in_features=hidden_size,
out_features=embed_size,
bias=True)
self.bn_stop_s = nn.BatchNorm1d(num_features=1, momentum=momentum)
self.W_stop = nn.Linear(in_features=embed_size,
out_features=2,
bias=True)
self.bn_stop = nn.BatchNorm1d(num_features=1, momentum=momentum)
self.W_topic = nn.Linear(in_features=embed_size,
out_features=embed_size,
bias=True)
self.bn_topic = nn.BatchNorm1d(num_features=1, momentum=momentum)
self.sigmoid = nn.Sigmoid()
self.tanh = nn.Tanh()
self.__init_weight()
def __init_weight(self):
self.W_t_h.weight.data.uniform_(-0.1, 0.1)
self.W_t_h.bias.data.fill_(0)
self.W_t_ctx.weight.data.uniform_(-0.1, 0.1)
self.W_t_ctx.bias.data.fill_(0)
self.W_stop_s_1.weight.data.uniform_(-0.1, 0.1)
self.W_stop_s_1.bias.data.fill_(0)
self.W_stop_s.weight.data.uniform_(-0.1, 0.1)
self.W_stop_s.bias.data.fill_(0)
self.W_stop.weight.data.uniform_(-0.1, 0.1)
self.W_stop.bias.data.fill_(0)
self.W_topic.weight.data.uniform_(-0.1, 0.1)
self.W_topic.bias.data.fill_(0)
def forward(self, ctx, prev_hidden_state, states=None) -> object:
"""
:rtype: object
"""
if self.version == 'v1':
return self.v1(ctx, prev_hidden_state, states)
elif self.version == 'v2':
return self.v2(ctx, prev_hidden_state, states)
elif self.version == 'v3':
return self.v3(ctx, prev_hidden_state, states)
def v1(self, ctx, prev_hidden_state, states=None):
"""
v1 (only training)
:param ctx:
:param prev_hidden_state:
:param states:
:return:
"""
ctx = ctx.unsqueeze(1)
hidden_state, states = self.lstm(ctx, states)
topic = self.W_topic(self.sigmoid(self.bn_t_h(self.W_t_h(hidden_state))
+ self.bn_t_ctx(self.W_t_ctx(ctx))))
p_stop = self.W_stop(self.sigmoid(self.bn_stop_s_1(self.W_stop_s_1(prev_hidden_state))
+ self.bn_stop_s(self.W_stop_s(hidden_state))))
return topic, p_stop, hidden_state, states
def v2(self, ctx, prev_hidden_state, states=None):
"""
v2
:rtype: object
"""
ctx = ctx.unsqueeze(1)
hidden_state, states = self.lstm(ctx, states)
topic = self.bn_topic(self.W_topic(self.tanh(self.bn_t_h(self.W_t_h(hidden_state)
+ self.W_t_ctx(ctx)))))
p_stop = self.bn_stop(self.W_stop(self.tanh(self.bn_stop_s(self.W_stop_s_1(prev_hidden_state)
+ self.W_stop_s(hidden_state)))))
return topic, p_stop, hidden_state, states
def v3(self, ctx, prev_hidden_state, states=None):
"""
v3
:rtype: object
"""
ctx = ctx.unsqueeze(1)
hidden_state, states = self.lstm(ctx, states)
topic = self.W_topic(self.tanh(self.W_t_h(hidden_state) + self.W_t_ctx(ctx)))
p_stop = self.W_stop(self.tanh(self.W_stop_s_1(prev_hidden_state) + self.W_stop_s(hidden_state)))
return topic, p_stop, hidden_state, states
class WordLSTM(nn.Module):
def __init__(self,
embed_size,
hidden_size,
vocab_size,
num_layers,
n_max=50):
super(WordLSTM, self).__init__()
self.embed = nn.Embedding(vocab_size, embed_size)
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers, batch_first=True)
self.linear = nn.Linear(hidden_size, vocab_size)
self.__init_weights()
self.n_max = n_max
self.vocab_size = vocab_size
def __init_weights(self):
self.embed.weight.data.uniform_(-0.1, 0.1)
self.linear.weight.data.uniform_(-0.1, 0.1)
self.linear.bias.data.fill_(0)
def forward(self, topic_vec, captions):
embeddings = self.embed(captions)
embeddings = torch.cat((topic_vec, embeddings), 1)
hidden, _ = self.lstm(embeddings)
outputs = self.linear(hidden[:, -1, :])
return outputs
def sample(self, features, start_tokens):
sampled_ids = np.zeros((np.shape(features)[0], self.n_max))
sampled_ids[:, 0] = start_tokens.view(-1, )
predicted = start_tokens
embeddings = features
embeddings = embeddings
for i in range(1, self.n_max):
predicted = self.embed(predicted)
embeddings = torch.cat([embeddings, predicted], dim=1)
hidden_states, _ = self.lstm(embeddings)
hidden_states = hidden_states[:, -1, :]
outputs = self.linear(hidden_states)
predicted = torch.max(outputs, 1)[1]
sampled_ids[:, i] = predicted
predicted = predicted.unsqueeze(1)
return sampled_ids
if __name__ == '__main__':
import torchvision.transforms as transforms
import warnings
warnings.filterwarnings("ignore")
#
extractor = VisualFeatureExtractor(model_name='resnet152')
mlc = MLC(fc_in_features=extractor.out_features)
co_att = CoAttention(visual_size=extractor.out_features)
sent_lstm = SentenceLSTM()
word_lstm = WordLSTM(embed_size=512, hidden_size=512, vocab_size=100, num_layers=1)
images = torch.randn((4, 3, 224, 224))
captions = torch.ones((4, 10)).long()
hidden_state = torch.randn((4, 1, 512))
# # image_file = '../data/images/CXR2814_IM-1239-1001.png'
# # # images = Image.open(image_file).convert('RGB')
# # # captions = torch.ones((1, 10)).long()
# # # hidden_state = torch.randn((10, 512))
# #
# norm = transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
#
# transform = transforms.Compose([
# transforms.Resize(256),
# transforms.TenCrop(224),
# transforms.Lambda(lambda crops: torch.stack([norm(transforms.ToTensor()(crop)) for crop in crops])),
# ])
# images = transform(images)
# images.unsqueeze_(0)
#
# # bs, ncrops, c, h, w = images.size()
# # images = images.view(-1, c, h, w)
#
print("images:{}".format(images.shape))
print("captions:{}".format(captions.shape))
print("hidden_states:{}".format(hidden_state.shape))
visual_features, avg_features = extractor.forward(images)
print("visual_features:{}".format(visual_features.shape))
print("avg features:{}".format(avg_features.shape))
tags, semantic_features = mlc.forward(avg_features)
print("tags:{}".format(tags.shape))
print("semantic_features:{}".format(semantic_features.shape))
ctx, alpht_v, alpht_a = co_att.forward(avg_features, semantic_features, hidden_state)
print("ctx:{}".format(ctx.shape))
print("alpht_v:{}".format(alpht_v.shape))
print("alpht_a:{}".format(alpht_a.shape))
topic, p_stop, hidden_state, states = sent_lstm.forward(ctx, hidden_state)
# p_stop_avg = p_stop.view(bs, ncrops, -1).mean(1)
print("Topic:{}".format(topic.shape))
print("P_STOP:{}".format(p_stop.shape))
# print("P_stop_avg:{}".format(p_stop_avg.shape))
words = word_lstm.forward(topic, captions)
print("words:{}".format(words.shape))
cam = torch.mul(visual_features, alpht_v.view(alpht_v.shape[0], alpht_v.shape[1], 1, 1)).sum(1)
cam.squeeze_()
cam = cam.cpu().data.numpy()
for i in range(cam.shape[0]):
heatmap = cam[i]
heatmap = heatmap / np.max(heatmap)
print(heatmap.shape)
|