File size: 27,347 Bytes
0cd6025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
import warnings
warnings.filterwarnings("ignore")
import os
import argparse
import face_alignment
import torch
import torchaudio
import numpy as np
import cv2
from PIL import Image, ImageDraw
from moviepy import *
from collections import deque                                                 
from skimage import transform as tf
import yaml

from look2hear.models import Dolphin
from look2hear.datas.transform import get_preprocessing_pipelines

from face_detection_utils import detect_faces

# -- Landmark interpolation:
def linear_interpolate(landmarks, start_idx, stop_idx):
    start_landmarks = landmarks[start_idx]
    stop_landmarks = landmarks[stop_idx]
    delta = stop_landmarks - start_landmarks
    for idx in range(1, stop_idx-start_idx):
        landmarks[start_idx+idx] = start_landmarks + idx/float(stop_idx-start_idx) * delta
    return landmarks

# -- Face Transformation
def warp_img(src, dst, img, std_size):
    tform = tf.estimate_transform('similarity', src, dst)  # find the transformation matrix
    warped = tf.warp(img, inverse_map=tform.inverse, output_shape=std_size)  # wrap the frame image
    warped = warped * 255  # note output from wrap is double image (value range [0,1])
    warped = warped.astype('uint8')
    return warped, tform

def apply_transform(transform, img, std_size):
    warped = tf.warp(img, inverse_map=transform.inverse, output_shape=std_size)
    warped = warped * 255  # note output from wrap is double image (value range [0,1])
    warped = warped.astype('uint8')
    return warped

# -- Crop
def cut_patch(img, landmarks, height, width, threshold=5):

    center_x, center_y = np.mean(landmarks, axis=0)

    if center_y - height < 0:                                                
        center_y = height                                                    
    if center_y - height < 0 - threshold:                                    
        raise Exception('too much bias in height')                           
    if center_x - width < 0:                                                 
        center_x = width                                                     
    if center_x - width < 0 - threshold:                                     
        raise Exception('too much bias in width')                            
                                                                             
    if center_y + height > img.shape[0]:                                     
        center_y = img.shape[0] - height                                     
    if center_y + height > img.shape[0] + threshold:                         
        raise Exception('too much bias in height')                           
    if center_x + width > img.shape[1]:                                      
        center_x = img.shape[1] - width                                      
    if center_x + width > img.shape[1] + threshold:                          
        raise Exception('too much bias in width')                            
                                                                             
    cutted_img = np.copy(img[ int(round(center_y) - round(height)): int(round(center_y) + round(height)),
                         int(round(center_x) - round(width)): int(round(center_x) + round(width))])
    return cutted_img

# -- RGB to GRAY
def convert_bgr2gray(data):
    return np.stack([cv2.cvtColor(_, cv2.COLOR_BGR2GRAY) for _ in data], axis=0)


def save2npz(filename, data=None):
    assert data is not None, "data is {}".format(data)
    if not os.path.exists(os.path.dirname(filename)):
        os.makedirs(os.path.dirname(filename))
    np.savez_compressed(filename, data=data)
    
def read_video(filename):
    """Read video frames using MoviePy for better compatibility"""
    try:
        video_clip = VideoFileClip(filename)
        for frame in video_clip.iter_frames():
            # Convert RGB to BGR to match cv2 format
            frame_bgr = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
            yield frame_bgr
        video_clip.close()
    except Exception as e:
        print(f"Error reading video {filename}: {e}")
        return

def face2head(boxes, scale=1.5):
    new_boxes = []
    for box in boxes:
        width = box[2] - box[0]
        height= box[3] - box[1]
        width_center = (box[2] + box[0]) / 2
        height_center = (box[3] + box[1]) / 2
        square_width = int(max(width, height) * scale)
        new_box = [width_center - square_width/2, height_center - square_width/2, width_center + square_width/2, height_center + square_width/2]
        new_boxes.append(new_box)
    return new_boxes

def bb_intersection_over_union(boxA, boxB):
    # determine the (x, y)-coordinates of the intersection rectangle
    xA = max(boxA[0], boxB[0])
    yA = max(boxA[1], boxB[1])
    xB = min(boxA[2], boxB[2])
    yB = min(boxA[3], boxB[3])
    # compute the area of intersection rectangle
    interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1)
    # compute the area of both the prediction and ground-truth
    # rectangles
    boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1)
    boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1)
    # compute the intersection over union by taking the intersection
    # area and dividing it by the sum of prediction + ground-truth
    # areas - the interesection area
    iou = interArea / float(boxAArea + boxBArea - interArea)
    # return the intersection over union value
    return iou

def detectface(video_input_path, output_path, detect_every_N_frame, scalar_face_detection, number_of_speakers):
    device = torch.device('cuda' if torch.cuda.get_device_name() else 'cpu')
    print('Running on device: {}'.format(device))
    os.makedirs(os.path.join(output_path, 'faces'), exist_ok=True)
    os.makedirs(os.path.join(output_path, 'landmark'), exist_ok=True)

    landmarks_dic = {}
    faces_dic = {}
    boxes_dic = {}
    
    for i in range(number_of_speakers):
        landmarks_dic[i] = []
        faces_dic[i] = []
        boxes_dic[i] = []

    video_clip = VideoFileClip(video_input_path)
    print("Video statistics: ", video_clip.w, video_clip.h, (video_clip.w, video_clip.h), video_clip.fps)
    frames = [Image.fromarray(frame) for frame in video_clip.iter_frames()]
    print('Number of frames in video: ', len(frames))
    video_clip.close()
    fa = face_alignment.FaceAlignment(face_alignment.LandmarksType.TWO_D, flip_input=False)
    
    for i, frame in enumerate(frames):
        print('\rTracking frame: {}'.format(i + 1), end='')
        
        # Detect faces every N frames
        if i % detect_every_N_frame == 0:
            frame_array = np.array(frame)

            detected_boxes, _ = detect_faces(
                frame_array,
                threshold=0.9,
                allow_upscaling=False,
            )

            if detected_boxes is None or len(detected_boxes) == 0:
                detected_boxes, _ = detect_faces(
                    frame_array,
                    threshold=0.7,
                    allow_upscaling=True,
                )

            if detected_boxes is not None and len(detected_boxes) > 0:
                detected_boxes = detected_boxes[:number_of_speakers]
                detected_boxes = face2head(detected_boxes, scalar_face_detection)
            else:
                detected_boxes = []
        
        # Process the detection results
        if i == 0:
            # First frame - initialize tracking
            if len(detected_boxes) < number_of_speakers:
                raise ValueError(f"First frame must detect at least {number_of_speakers} faces, but only found {len(detected_boxes)}")
            
            # Assign first detections to speakers in order
            for j in range(number_of_speakers):
                box = detected_boxes[j]
                face = frame.crop((box[0], box[1], box[2], box[3])).resize((224,224))
                preds = fa.get_landmarks(np.array(face))
                
                if preds is None:
                    raise ValueError(f"Face landmarks not detected in initial frame for speaker {j}")
                
                faces_dic[j].append(face)
                landmarks_dic[j].append(preds)
                boxes_dic[j].append(box)
        else:
            # For subsequent frames, match detected boxes to speakers
            matched_speakers = set()
            speaker_boxes = [None] * number_of_speakers
            
            # Match each detected box to the most likely speaker
            for box in detected_boxes:
                iou_scores = []
                for speaker_id in range(number_of_speakers):
                    if speaker_id in matched_speakers:
                        iou_scores.append(-1)  # Already matched
                    else:
                        last_box = boxes_dic[speaker_id][-1]
                        iou_score = bb_intersection_over_union(box, last_box)
                        iou_scores.append(iou_score)
                
                if max(iou_scores) > 0:  # Valid match found
                    best_speaker = iou_scores.index(max(iou_scores))
                    speaker_boxes[best_speaker] = box
                    matched_speakers.add(best_speaker)
            
            # Process each speaker
            for speaker_id in range(number_of_speakers):
                if speaker_boxes[speaker_id] is not None:
                    # Use detected box
                    box = speaker_boxes[speaker_id]
                else:
                    # Use previous box for this speaker
                    box = boxes_dic[speaker_id][-1]
                
                # Extract face and landmarks
                face = frame.crop((box[0], box[1], box[2], box[3])).resize((224,224))
                preds = fa.get_landmarks(np.array(face))
                
                if preds is None:
                    # Use previous landmarks if detection fails
                    preds = landmarks_dic[speaker_id][-1]
                
                faces_dic[speaker_id].append(face)
                landmarks_dic[speaker_id].append(preds)
                boxes_dic[speaker_id].append(box)
    
    # Verify all speakers have same number of frames
    frame_counts = [len(boxes_dic[s]) for s in range(number_of_speakers)]
    print(f"\nFrame counts per speaker: {frame_counts}")
    assert all(count == len(frames) for count in frame_counts), f"Inconsistent frame counts: {frame_counts}"
    
    # Continue with saving videos and landmarks...
    for s in range(number_of_speakers):
        frames_tracked = []
        for i, frame in enumerate(frames):
            frame_draw = frame.copy()
            draw = ImageDraw.Draw(frame_draw)
            draw.rectangle(boxes_dic[s][i], outline=(255, 0, 0), width=6) 
            frames_tracked.append(frame_draw)
            
        # Save tracked video
        tracked_frames = [np.array(frame) for frame in frames_tracked]
        if tracked_frames:
            tracked_clip = ImageSequenceClip(tracked_frames, fps=25.0)
            tracked_video_path = os.path.join(output_path, 'video_tracked' + str(s+1) + '.mp4')
            tracked_clip.write_videofile(tracked_video_path, codec='libx264', audio=False, logger=None)
            tracked_clip.close()

    # Save landmarks
    for i in range(number_of_speakers):    
        save2npz(os.path.join(output_path, 'landmark', 'speaker' + str(i+1)+'.npz'), data=landmarks_dic[i])
        
        # Save face video
        face_frames = [np.array(frame) for frame in faces_dic[i]]
        if face_frames:
            face_clip = ImageSequenceClip(face_frames, fps=25.0)
            face_video_path = os.path.join(output_path, 'faces', 'speaker' + str(i+1) + '.mp4')
            face_clip.write_videofile(face_video_path, codec='libx264', audio=False, logger=None)
            face_clip.close()

    # Output video path
    parts = video_input_path.split('/')
    video_name = parts[-1][:-4]
    if not os.path.exists(os.path.join(output_path, 'filename_input')):
        os.mkdir(os.path.join(output_path, 'filename_input'))
    csvfile = open(os.path.join(output_path, 'filename_input', str(video_name) + '.csv'), 'w')
    for i in range(number_of_speakers):
        csvfile.write('speaker' + str(i+1)+ ',0\n')
    csvfile.close()
    return os.path.join(output_path, 'filename_input', str(video_name) + '.csv')


def crop_patch(mean_face_landmarks, video_pathname, landmarks, window_margin, start_idx, stop_idx, crop_height, crop_width, STD_SIZE=(256, 256)):

    """Crop mouth patch
    :param str video_pathname: pathname for the video_dieo
    :param list landmarks: interpolated landmarks
    """
    
    stablePntsIDs = [33, 36, 39, 42, 45]

    frame_idx = 0
    frame_gen = read_video(video_pathname)
    while True:
        try:
            frame = frame_gen.__next__() ## -- BGR
        except StopIteration:
            break
        if frame_idx == 0:
            q_frame, q_landmarks = deque(), deque()
            sequence = []

        q_landmarks.append(landmarks[frame_idx])
        q_frame.append(frame)
        if len(q_frame) == window_margin:
            smoothed_landmarks = np.mean(q_landmarks, axis=0)
            cur_landmarks = q_landmarks.popleft()
            cur_frame = q_frame.popleft()
            # -- affine transformation
            trans_frame, trans = warp_img( smoothed_landmarks[stablePntsIDs, :],
                                           mean_face_landmarks[stablePntsIDs, :],
                                           cur_frame,
                                           STD_SIZE)
            trans_landmarks = trans(cur_landmarks)
            # -- crop mouth patch
            sequence.append( cut_patch( trans_frame,
                                        trans_landmarks[start_idx:stop_idx],
                                        crop_height//2,
                                        crop_width//2,))
        if frame_idx == len(landmarks)-1:
            #deal with corner case with video too short
            if len(landmarks) < window_margin:
                smoothed_landmarks = np.mean(q_landmarks, axis=0)
                cur_landmarks = q_landmarks.popleft()
                cur_frame = q_frame.popleft()

                # -- affine transformation
                trans_frame, trans = warp_img(smoothed_landmarks[stablePntsIDs, :],
                                            mean_face_landmarks[stablePntsIDs, :],
                                            cur_frame,
                                            STD_SIZE)
                trans_landmarks = trans(cur_landmarks)
                # -- crop mouth patch
                sequence.append(cut_patch( trans_frame,
                                trans_landmarks[start_idx:stop_idx],
                                crop_height//2,
                                crop_width//2,))

            while q_frame:
                cur_frame = q_frame.popleft()
                # -- transform frame
                trans_frame = apply_transform( trans, cur_frame, STD_SIZE)
                # -- transform landmarks
                trans_landmarks = trans(q_landmarks.popleft())
                # -- crop mouth patch
                sequence.append( cut_patch( trans_frame,
                                            trans_landmarks[start_idx:stop_idx],
                                            crop_height//2,
                                            crop_width//2,))
            return np.array(sequence)
        frame_idx += 1
    return None

def landmarks_interpolate(landmarks):
    
    """Interpolate landmarks
    param list landmarks: landmarks detected in raw videos
    """

    valid_frames_idx = [idx for idx, _ in enumerate(landmarks) if _ is not None]
    if not valid_frames_idx:
        return None
    for idx in range(1, len(valid_frames_idx)):
        if valid_frames_idx[idx] - valid_frames_idx[idx-1] == 1:
            continue
        else:
            landmarks = linear_interpolate(landmarks, valid_frames_idx[idx-1], valid_frames_idx[idx])
    valid_frames_idx = [idx for idx, _ in enumerate(landmarks) if _ is not None]
    # -- Corner case: keep frames at the beginning or at the end failed to be detected.
    if valid_frames_idx:
        landmarks[:valid_frames_idx[0]] = [landmarks[valid_frames_idx[0]]] * valid_frames_idx[0]
        landmarks[valid_frames_idx[-1]:] = [landmarks[valid_frames_idx[-1]]] * (len(landmarks) - valid_frames_idx[-1])
    valid_frames_idx = [idx for idx, _ in enumerate(landmarks) if _ is not None]
    assert len(valid_frames_idx) == len(landmarks), "not every frame has landmark"
    return landmarks

def crop_mouth(video_direc, landmark_direc, filename_path, save_direc, convert_gray=False, testset_only=False):
    lines = open(filename_path).read().splitlines()
    lines = list(filter(lambda x: 'test' in x, lines)) if testset_only else lines

    for filename_idx, line in enumerate(lines):

        filename, person_id = line.split(',')
        print('idx: {} \tProcessing.\t{}'.format(filename_idx, filename))

        video_pathname = os.path.join(video_direc, filename+'.mp4')
        landmarks_pathname = os.path.join(landmark_direc, filename+'.npz')
        dst_pathname = os.path.join( save_direc, filename+'.npz')

        # if os.path.exists(dst_pathname):
        #    continue

        multi_sub_landmarks = np.load(landmarks_pathname, allow_pickle=True)['data']
        landmarks = [None] * len(multi_sub_landmarks)
        for frame_idx in range(len(landmarks)):
            try:
                #landmarks[frame_idx] = multi_sub_landmarks[frame_idx][int(person_id)]['facial_landmarks'] #original for LRW
                landmarks[frame_idx] = multi_sub_landmarks[frame_idx][int(person_id)] #VOXCELEB2
            except (IndexError, TypeError):
                continue

        # -- pre-process landmarks: interpolate frames not being detected.
        preprocessed_landmarks = landmarks_interpolate(landmarks)
        if not preprocessed_landmarks:
            continue

        # -- crop
        mean_face_landmarks = np.load('assets/20words_mean_face.npy')
        sequence = crop_patch(mean_face_landmarks, video_pathname, preprocessed_landmarks, 12, 48, 68, 96, 96)
        assert sequence is not None, "cannot crop from {}.".format(filename)

        # -- save
        data = convert_bgr2gray(sequence) if convert_gray else sequence[...,::-1]
        save2npz(dst_pathname, data=data)

def convert_video_fps(input_file, output_file, target_fps=25):
    """Convert video to target FPS using moviepy"""
    video = VideoFileClip(input_file)
    video_fps = video.fps
    
    if video_fps != target_fps:
        video.write_videofile(
            output_file,
            fps=target_fps,
            codec='libx264',
            audio_codec='aac',
            temp_audiofile='temp-audio.m4a',
            remove_temp=True,
        )
    else:
        # If already at target fps, just copy
        import shutil
        shutil.copy2(input_file, output_file)
    
    video.close()
    print(f'Video has been converted to {target_fps} fps and saved to {output_file}')

def extract_audio(video_file, audio_output_file, sample_rate=16000):
    """Extract audio from video using moviepy"""
    video = VideoFileClip(video_file)
    audio = video.audio
    
    # Save audio with specified sample rate
    audio.write_audiofile(audio_output_file, fps=sample_rate, nbytes=2, codec='pcm_s16le')
    
    video.close()
    audio.close()

def merge_video_audio(video_file, audio_file, output_file):
    """Merge video and audio using moviepy"""
    video = VideoFileClip(video_file)
    audio = AudioFileClip(audio_file)
    
    # Attach audio (MoviePy v2 renamed set_audio to with_audio)
    set_audio_fn = getattr(video, "set_audio", None)
    if callable(set_audio_fn):
        final_video = set_audio_fn(audio)
    else:
        with_audio_fn = getattr(video, "with_audio", None)
        if not callable(with_audio_fn):
            video.close()
            audio.close()
            raise AttributeError("VideoFileClip object lacks both set_audio and with_audio methods")
        final_video = with_audio_fn(audio)
    
    # Write the result
    final_video.write_videofile(output_file, codec='libx264', audio_codec='aac', temp_audiofile='temp-audio.m4a', remove_temp=True)
    
    # Clean up
    video.close()
    audio.close()
    final_video.close()

def process_video(input_file, output_path, number_of_speakers=2, 
                  detect_every_N_frame=8, scalar_face_detection=1.5,
                  config_path="checkpoints/vox2/conf.yml",
                  cuda_device=None):
    """Main processing function for video speaker separation"""
    
    # Set CUDA device if specified
    if cuda_device is not None:
        os.environ["CUDA_VISIBLE_DEVICES"] = str(cuda_device)
    
    # Create output directory
    os.makedirs(output_path, exist_ok=True)
    
    # Convert video to 25fps
    temp_25fps_file = os.path.join(output_path, 'temp_25fps.mp4')
    convert_video_fps(input_file, temp_25fps_file, target_fps=25)
    
    # Detect faces
    filename_path = detectface(video_input_path=temp_25fps_file, 
                              output_path=output_path, 
                              detect_every_N_frame=detect_every_N_frame, 
                              scalar_face_detection=scalar_face_detection, 
                              number_of_speakers=number_of_speakers)
    
    # Extract audio
    audio_output = os.path.join(output_path, 'audio.wav')
    extract_audio(temp_25fps_file, audio_output, sample_rate=16000)
    
    # Crop mouth
    crop_mouth(video_direc=os.path.join(output_path, "faces"), 
               landmark_direc=os.path.join(output_path, "landmark"), 
               filename_path=filename_path, 
               save_direc=os.path.join(output_path, "mouthroi"), 
               convert_gray=True, 
               testset_only=False)
    
    # Load model
    audiomodel = Dolphin.from_pretrained("JusperLee/Dolphin")
    
    audiomodel.cuda()
    audiomodel.eval()
    
    # Process each speaker
    with torch.no_grad():
        for i in range(number_of_speakers):
            mouth_roi = np.load(os.path.join(output_path, "mouthroi", f"speaker{i+1}.npz"))["data"]
            mouth_roi = get_preprocessing_pipelines()["val"](mouth_roi)
            
            mix, sr = torchaudio.load(audio_output)
            mix = mix.cuda().mean(dim=0)
            
            window_size = 4 * sr 
            hop_size = 4 * sr 
            
            all_estimates = []
            
            # 滑动窗口处理
            start_idx = 0
            while start_idx < len(mix):
                end_idx = min(start_idx + window_size, len(mix))
                window_mix = mix[start_idx:end_idx]
                
                start_frame = int(start_idx / sr * 25)
                end_frame = int(end_idx / sr * 25)
                end_frame = min(end_frame, len(mouth_roi))
                window_mouth_roi = mouth_roi[start_frame:end_frame]
                
                est_sources = audiomodel(window_mix[None], 
                                    torch.from_numpy(window_mouth_roi[None, None]).float().cuda())
                
                all_estimates.append({
                    'start': start_idx,
                    'end': end_idx,
                    'estimate': est_sources[0].cpu()
                })
                
                start_idx += hop_size
                
                if start_idx >= len(mix):
                    break
            
            output_length = len(mix)
            merged_output = torch.zeros(1, output_length)
            weights = torch.zeros(output_length)
            
            for est in all_estimates:
                window_len = est['end'] - est['start']
                hann_window = torch.hann_window(window_len)
                
                merged_output[0, est['start']:est['end']] += est['estimate'][0, :window_len] * hann_window
                weights[est['start']:est['end']] += hann_window
            
            merged_output[:, weights > 0] /= weights[weights > 0]
            
            torchaudio.save(os.path.join(output_path, f"speaker{i+1}_est.wav"), merged_output, sr)

    
    # Merge video with separated audio for each speaker
    output_files = []
    for i in range(number_of_speakers):
        video_input = os.path.join(output_path, f"video_tracked{i+1}.mp4")
        audio_input = os.path.join(output_path, f"speaker{i+1}_est.wav")
        video_output = os.path.join(output_path, f"s{i+1}.mp4")
        
        merge_video_audio(video_input, audio_input, video_output)
        output_files.append(video_output)
    
    # Clean up temporary file
    if os.path.exists(temp_25fps_file):
        os.remove(temp_25fps_file)
    
    return output_files

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Video Speaker Separation using Dolphin model')
    parser.add_argument('--input', '-i', type=str, required=True,
                        help='Path to input video file')
    parser.add_argument('--output', '-o', type=str, default=None,
                        help='Output directory path (default: creates directory based on input filename)')
    parser.add_argument('--speakers', '-s', type=int, default=2,
                        help='Number of speakers to separate (default: 2)')
    parser.add_argument('--detect-every-n', type=int, default=8,
                        help='Detect faces every N frames (default: 8)')
    parser.add_argument('--face-scale', type=float, default=1.5,
                        help='Face detection bounding box scale factor (default: 1.5)')
    parser.add_argument('--cuda-device', type=int, default=0,
                        help='CUDA device ID to use (default: 0, set to -1 for CPU)')
    parser.add_argument('--config', type=str, default="checkpoints/vox2/conf.yml",
                        help='Path to model configuration file')
    
    args = parser.parse_args()
    
    # 验证输入文件是否存在
    if not os.path.exists(args.input):
        print(f"Error: Input file '{args.input}' does not exist")
        exit(1)
    
    # 如果没有指定输出路径,基于输入文件名创建输出目录
    if args.output is None:
        input_basename = os.path.splitext(os.path.basename(args.input))[0]
        args.output = os.path.join(os.path.dirname(args.input), input_basename + "_output")
    
    # 设置CUDA设备
    cuda_device = args.cuda_device if args.cuda_device >= 0 else None
    
    print(f"Processing video: {args.input}")
    print(f"Output directory: {args.output}")
    print(f"Number of speakers: {args.speakers}")
    print(f"CUDA device: {cuda_device if cuda_device is not None else 'CPU'}")
    
    # 处理视频
    output_files = process_video(
        input_file=args.input,
        output_path=args.output,
        number_of_speakers=args.speakers,
        detect_every_N_frame=args.detect_every_n,
        scalar_face_detection=args.face_scale,
        config_path=args.config,
        cuda_device=cuda_device
    )
    
    print("\nProcessing completed!")
    print("Output files:")
    for i, output_file in enumerate(output_files):
        print(f"  Speaker {i+1}: {output_file}")