File size: 27,347 Bytes
0cd6025 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 |
import warnings
warnings.filterwarnings("ignore")
import os
import argparse
import face_alignment
import torch
import torchaudio
import numpy as np
import cv2
from PIL import Image, ImageDraw
from moviepy import *
from collections import deque
from skimage import transform as tf
import yaml
from look2hear.models import Dolphin
from look2hear.datas.transform import get_preprocessing_pipelines
from face_detection_utils import detect_faces
# -- Landmark interpolation:
def linear_interpolate(landmarks, start_idx, stop_idx):
start_landmarks = landmarks[start_idx]
stop_landmarks = landmarks[stop_idx]
delta = stop_landmarks - start_landmarks
for idx in range(1, stop_idx-start_idx):
landmarks[start_idx+idx] = start_landmarks + idx/float(stop_idx-start_idx) * delta
return landmarks
# -- Face Transformation
def warp_img(src, dst, img, std_size):
tform = tf.estimate_transform('similarity', src, dst) # find the transformation matrix
warped = tf.warp(img, inverse_map=tform.inverse, output_shape=std_size) # wrap the frame image
warped = warped * 255 # note output from wrap is double image (value range [0,1])
warped = warped.astype('uint8')
return warped, tform
def apply_transform(transform, img, std_size):
warped = tf.warp(img, inverse_map=transform.inverse, output_shape=std_size)
warped = warped * 255 # note output from wrap is double image (value range [0,1])
warped = warped.astype('uint8')
return warped
# -- Crop
def cut_patch(img, landmarks, height, width, threshold=5):
center_x, center_y = np.mean(landmarks, axis=0)
if center_y - height < 0:
center_y = height
if center_y - height < 0 - threshold:
raise Exception('too much bias in height')
if center_x - width < 0:
center_x = width
if center_x - width < 0 - threshold:
raise Exception('too much bias in width')
if center_y + height > img.shape[0]:
center_y = img.shape[0] - height
if center_y + height > img.shape[0] + threshold:
raise Exception('too much bias in height')
if center_x + width > img.shape[1]:
center_x = img.shape[1] - width
if center_x + width > img.shape[1] + threshold:
raise Exception('too much bias in width')
cutted_img = np.copy(img[ int(round(center_y) - round(height)): int(round(center_y) + round(height)),
int(round(center_x) - round(width)): int(round(center_x) + round(width))])
return cutted_img
# -- RGB to GRAY
def convert_bgr2gray(data):
return np.stack([cv2.cvtColor(_, cv2.COLOR_BGR2GRAY) for _ in data], axis=0)
def save2npz(filename, data=None):
assert data is not None, "data is {}".format(data)
if not os.path.exists(os.path.dirname(filename)):
os.makedirs(os.path.dirname(filename))
np.savez_compressed(filename, data=data)
def read_video(filename):
"""Read video frames using MoviePy for better compatibility"""
try:
video_clip = VideoFileClip(filename)
for frame in video_clip.iter_frames():
# Convert RGB to BGR to match cv2 format
frame_bgr = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
yield frame_bgr
video_clip.close()
except Exception as e:
print(f"Error reading video {filename}: {e}")
return
def face2head(boxes, scale=1.5):
new_boxes = []
for box in boxes:
width = box[2] - box[0]
height= box[3] - box[1]
width_center = (box[2] + box[0]) / 2
height_center = (box[3] + box[1]) / 2
square_width = int(max(width, height) * scale)
new_box = [width_center - square_width/2, height_center - square_width/2, width_center + square_width/2, height_center + square_width/2]
new_boxes.append(new_box)
return new_boxes
def bb_intersection_over_union(boxA, boxB):
# determine the (x, y)-coordinates of the intersection rectangle
xA = max(boxA[0], boxB[0])
yA = max(boxA[1], boxB[1])
xB = min(boxA[2], boxB[2])
yB = min(boxA[3], boxB[3])
# compute the area of intersection rectangle
interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1)
# compute the area of both the prediction and ground-truth
# rectangles
boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1)
boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1)
# compute the intersection over union by taking the intersection
# area and dividing it by the sum of prediction + ground-truth
# areas - the interesection area
iou = interArea / float(boxAArea + boxBArea - interArea)
# return the intersection over union value
return iou
def detectface(video_input_path, output_path, detect_every_N_frame, scalar_face_detection, number_of_speakers):
device = torch.device('cuda' if torch.cuda.get_device_name() else 'cpu')
print('Running on device: {}'.format(device))
os.makedirs(os.path.join(output_path, 'faces'), exist_ok=True)
os.makedirs(os.path.join(output_path, 'landmark'), exist_ok=True)
landmarks_dic = {}
faces_dic = {}
boxes_dic = {}
for i in range(number_of_speakers):
landmarks_dic[i] = []
faces_dic[i] = []
boxes_dic[i] = []
video_clip = VideoFileClip(video_input_path)
print("Video statistics: ", video_clip.w, video_clip.h, (video_clip.w, video_clip.h), video_clip.fps)
frames = [Image.fromarray(frame) for frame in video_clip.iter_frames()]
print('Number of frames in video: ', len(frames))
video_clip.close()
fa = face_alignment.FaceAlignment(face_alignment.LandmarksType.TWO_D, flip_input=False)
for i, frame in enumerate(frames):
print('\rTracking frame: {}'.format(i + 1), end='')
# Detect faces every N frames
if i % detect_every_N_frame == 0:
frame_array = np.array(frame)
detected_boxes, _ = detect_faces(
frame_array,
threshold=0.9,
allow_upscaling=False,
)
if detected_boxes is None or len(detected_boxes) == 0:
detected_boxes, _ = detect_faces(
frame_array,
threshold=0.7,
allow_upscaling=True,
)
if detected_boxes is not None and len(detected_boxes) > 0:
detected_boxes = detected_boxes[:number_of_speakers]
detected_boxes = face2head(detected_boxes, scalar_face_detection)
else:
detected_boxes = []
# Process the detection results
if i == 0:
# First frame - initialize tracking
if len(detected_boxes) < number_of_speakers:
raise ValueError(f"First frame must detect at least {number_of_speakers} faces, but only found {len(detected_boxes)}")
# Assign first detections to speakers in order
for j in range(number_of_speakers):
box = detected_boxes[j]
face = frame.crop((box[0], box[1], box[2], box[3])).resize((224,224))
preds = fa.get_landmarks(np.array(face))
if preds is None:
raise ValueError(f"Face landmarks not detected in initial frame for speaker {j}")
faces_dic[j].append(face)
landmarks_dic[j].append(preds)
boxes_dic[j].append(box)
else:
# For subsequent frames, match detected boxes to speakers
matched_speakers = set()
speaker_boxes = [None] * number_of_speakers
# Match each detected box to the most likely speaker
for box in detected_boxes:
iou_scores = []
for speaker_id in range(number_of_speakers):
if speaker_id in matched_speakers:
iou_scores.append(-1) # Already matched
else:
last_box = boxes_dic[speaker_id][-1]
iou_score = bb_intersection_over_union(box, last_box)
iou_scores.append(iou_score)
if max(iou_scores) > 0: # Valid match found
best_speaker = iou_scores.index(max(iou_scores))
speaker_boxes[best_speaker] = box
matched_speakers.add(best_speaker)
# Process each speaker
for speaker_id in range(number_of_speakers):
if speaker_boxes[speaker_id] is not None:
# Use detected box
box = speaker_boxes[speaker_id]
else:
# Use previous box for this speaker
box = boxes_dic[speaker_id][-1]
# Extract face and landmarks
face = frame.crop((box[0], box[1], box[2], box[3])).resize((224,224))
preds = fa.get_landmarks(np.array(face))
if preds is None:
# Use previous landmarks if detection fails
preds = landmarks_dic[speaker_id][-1]
faces_dic[speaker_id].append(face)
landmarks_dic[speaker_id].append(preds)
boxes_dic[speaker_id].append(box)
# Verify all speakers have same number of frames
frame_counts = [len(boxes_dic[s]) for s in range(number_of_speakers)]
print(f"\nFrame counts per speaker: {frame_counts}")
assert all(count == len(frames) for count in frame_counts), f"Inconsistent frame counts: {frame_counts}"
# Continue with saving videos and landmarks...
for s in range(number_of_speakers):
frames_tracked = []
for i, frame in enumerate(frames):
frame_draw = frame.copy()
draw = ImageDraw.Draw(frame_draw)
draw.rectangle(boxes_dic[s][i], outline=(255, 0, 0), width=6)
frames_tracked.append(frame_draw)
# Save tracked video
tracked_frames = [np.array(frame) for frame in frames_tracked]
if tracked_frames:
tracked_clip = ImageSequenceClip(tracked_frames, fps=25.0)
tracked_video_path = os.path.join(output_path, 'video_tracked' + str(s+1) + '.mp4')
tracked_clip.write_videofile(tracked_video_path, codec='libx264', audio=False, logger=None)
tracked_clip.close()
# Save landmarks
for i in range(number_of_speakers):
save2npz(os.path.join(output_path, 'landmark', 'speaker' + str(i+1)+'.npz'), data=landmarks_dic[i])
# Save face video
face_frames = [np.array(frame) for frame in faces_dic[i]]
if face_frames:
face_clip = ImageSequenceClip(face_frames, fps=25.0)
face_video_path = os.path.join(output_path, 'faces', 'speaker' + str(i+1) + '.mp4')
face_clip.write_videofile(face_video_path, codec='libx264', audio=False, logger=None)
face_clip.close()
# Output video path
parts = video_input_path.split('/')
video_name = parts[-1][:-4]
if not os.path.exists(os.path.join(output_path, 'filename_input')):
os.mkdir(os.path.join(output_path, 'filename_input'))
csvfile = open(os.path.join(output_path, 'filename_input', str(video_name) + '.csv'), 'w')
for i in range(number_of_speakers):
csvfile.write('speaker' + str(i+1)+ ',0\n')
csvfile.close()
return os.path.join(output_path, 'filename_input', str(video_name) + '.csv')
def crop_patch(mean_face_landmarks, video_pathname, landmarks, window_margin, start_idx, stop_idx, crop_height, crop_width, STD_SIZE=(256, 256)):
"""Crop mouth patch
:param str video_pathname: pathname for the video_dieo
:param list landmarks: interpolated landmarks
"""
stablePntsIDs = [33, 36, 39, 42, 45]
frame_idx = 0
frame_gen = read_video(video_pathname)
while True:
try:
frame = frame_gen.__next__() ## -- BGR
except StopIteration:
break
if frame_idx == 0:
q_frame, q_landmarks = deque(), deque()
sequence = []
q_landmarks.append(landmarks[frame_idx])
q_frame.append(frame)
if len(q_frame) == window_margin:
smoothed_landmarks = np.mean(q_landmarks, axis=0)
cur_landmarks = q_landmarks.popleft()
cur_frame = q_frame.popleft()
# -- affine transformation
trans_frame, trans = warp_img( smoothed_landmarks[stablePntsIDs, :],
mean_face_landmarks[stablePntsIDs, :],
cur_frame,
STD_SIZE)
trans_landmarks = trans(cur_landmarks)
# -- crop mouth patch
sequence.append( cut_patch( trans_frame,
trans_landmarks[start_idx:stop_idx],
crop_height//2,
crop_width//2,))
if frame_idx == len(landmarks)-1:
#deal with corner case with video too short
if len(landmarks) < window_margin:
smoothed_landmarks = np.mean(q_landmarks, axis=0)
cur_landmarks = q_landmarks.popleft()
cur_frame = q_frame.popleft()
# -- affine transformation
trans_frame, trans = warp_img(smoothed_landmarks[stablePntsIDs, :],
mean_face_landmarks[stablePntsIDs, :],
cur_frame,
STD_SIZE)
trans_landmarks = trans(cur_landmarks)
# -- crop mouth patch
sequence.append(cut_patch( trans_frame,
trans_landmarks[start_idx:stop_idx],
crop_height//2,
crop_width//2,))
while q_frame:
cur_frame = q_frame.popleft()
# -- transform frame
trans_frame = apply_transform( trans, cur_frame, STD_SIZE)
# -- transform landmarks
trans_landmarks = trans(q_landmarks.popleft())
# -- crop mouth patch
sequence.append( cut_patch( trans_frame,
trans_landmarks[start_idx:stop_idx],
crop_height//2,
crop_width//2,))
return np.array(sequence)
frame_idx += 1
return None
def landmarks_interpolate(landmarks):
"""Interpolate landmarks
param list landmarks: landmarks detected in raw videos
"""
valid_frames_idx = [idx for idx, _ in enumerate(landmarks) if _ is not None]
if not valid_frames_idx:
return None
for idx in range(1, len(valid_frames_idx)):
if valid_frames_idx[idx] - valid_frames_idx[idx-1] == 1:
continue
else:
landmarks = linear_interpolate(landmarks, valid_frames_idx[idx-1], valid_frames_idx[idx])
valid_frames_idx = [idx for idx, _ in enumerate(landmarks) if _ is not None]
# -- Corner case: keep frames at the beginning or at the end failed to be detected.
if valid_frames_idx:
landmarks[:valid_frames_idx[0]] = [landmarks[valid_frames_idx[0]]] * valid_frames_idx[0]
landmarks[valid_frames_idx[-1]:] = [landmarks[valid_frames_idx[-1]]] * (len(landmarks) - valid_frames_idx[-1])
valid_frames_idx = [idx for idx, _ in enumerate(landmarks) if _ is not None]
assert len(valid_frames_idx) == len(landmarks), "not every frame has landmark"
return landmarks
def crop_mouth(video_direc, landmark_direc, filename_path, save_direc, convert_gray=False, testset_only=False):
lines = open(filename_path).read().splitlines()
lines = list(filter(lambda x: 'test' in x, lines)) if testset_only else lines
for filename_idx, line in enumerate(lines):
filename, person_id = line.split(',')
print('idx: {} \tProcessing.\t{}'.format(filename_idx, filename))
video_pathname = os.path.join(video_direc, filename+'.mp4')
landmarks_pathname = os.path.join(landmark_direc, filename+'.npz')
dst_pathname = os.path.join( save_direc, filename+'.npz')
# if os.path.exists(dst_pathname):
# continue
multi_sub_landmarks = np.load(landmarks_pathname, allow_pickle=True)['data']
landmarks = [None] * len(multi_sub_landmarks)
for frame_idx in range(len(landmarks)):
try:
#landmarks[frame_idx] = multi_sub_landmarks[frame_idx][int(person_id)]['facial_landmarks'] #original for LRW
landmarks[frame_idx] = multi_sub_landmarks[frame_idx][int(person_id)] #VOXCELEB2
except (IndexError, TypeError):
continue
# -- pre-process landmarks: interpolate frames not being detected.
preprocessed_landmarks = landmarks_interpolate(landmarks)
if not preprocessed_landmarks:
continue
# -- crop
mean_face_landmarks = np.load('assets/20words_mean_face.npy')
sequence = crop_patch(mean_face_landmarks, video_pathname, preprocessed_landmarks, 12, 48, 68, 96, 96)
assert sequence is not None, "cannot crop from {}.".format(filename)
# -- save
data = convert_bgr2gray(sequence) if convert_gray else sequence[...,::-1]
save2npz(dst_pathname, data=data)
def convert_video_fps(input_file, output_file, target_fps=25):
"""Convert video to target FPS using moviepy"""
video = VideoFileClip(input_file)
video_fps = video.fps
if video_fps != target_fps:
video.write_videofile(
output_file,
fps=target_fps,
codec='libx264',
audio_codec='aac',
temp_audiofile='temp-audio.m4a',
remove_temp=True,
)
else:
# If already at target fps, just copy
import shutil
shutil.copy2(input_file, output_file)
video.close()
print(f'Video has been converted to {target_fps} fps and saved to {output_file}')
def extract_audio(video_file, audio_output_file, sample_rate=16000):
"""Extract audio from video using moviepy"""
video = VideoFileClip(video_file)
audio = video.audio
# Save audio with specified sample rate
audio.write_audiofile(audio_output_file, fps=sample_rate, nbytes=2, codec='pcm_s16le')
video.close()
audio.close()
def merge_video_audio(video_file, audio_file, output_file):
"""Merge video and audio using moviepy"""
video = VideoFileClip(video_file)
audio = AudioFileClip(audio_file)
# Attach audio (MoviePy v2 renamed set_audio to with_audio)
set_audio_fn = getattr(video, "set_audio", None)
if callable(set_audio_fn):
final_video = set_audio_fn(audio)
else:
with_audio_fn = getattr(video, "with_audio", None)
if not callable(with_audio_fn):
video.close()
audio.close()
raise AttributeError("VideoFileClip object lacks both set_audio and with_audio methods")
final_video = with_audio_fn(audio)
# Write the result
final_video.write_videofile(output_file, codec='libx264', audio_codec='aac', temp_audiofile='temp-audio.m4a', remove_temp=True)
# Clean up
video.close()
audio.close()
final_video.close()
def process_video(input_file, output_path, number_of_speakers=2,
detect_every_N_frame=8, scalar_face_detection=1.5,
config_path="checkpoints/vox2/conf.yml",
cuda_device=None):
"""Main processing function for video speaker separation"""
# Set CUDA device if specified
if cuda_device is not None:
os.environ["CUDA_VISIBLE_DEVICES"] = str(cuda_device)
# Create output directory
os.makedirs(output_path, exist_ok=True)
# Convert video to 25fps
temp_25fps_file = os.path.join(output_path, 'temp_25fps.mp4')
convert_video_fps(input_file, temp_25fps_file, target_fps=25)
# Detect faces
filename_path = detectface(video_input_path=temp_25fps_file,
output_path=output_path,
detect_every_N_frame=detect_every_N_frame,
scalar_face_detection=scalar_face_detection,
number_of_speakers=number_of_speakers)
# Extract audio
audio_output = os.path.join(output_path, 'audio.wav')
extract_audio(temp_25fps_file, audio_output, sample_rate=16000)
# Crop mouth
crop_mouth(video_direc=os.path.join(output_path, "faces"),
landmark_direc=os.path.join(output_path, "landmark"),
filename_path=filename_path,
save_direc=os.path.join(output_path, "mouthroi"),
convert_gray=True,
testset_only=False)
# Load model
audiomodel = Dolphin.from_pretrained("JusperLee/Dolphin")
audiomodel.cuda()
audiomodel.eval()
# Process each speaker
with torch.no_grad():
for i in range(number_of_speakers):
mouth_roi = np.load(os.path.join(output_path, "mouthroi", f"speaker{i+1}.npz"))["data"]
mouth_roi = get_preprocessing_pipelines()["val"](mouth_roi)
mix, sr = torchaudio.load(audio_output)
mix = mix.cuda().mean(dim=0)
window_size = 4 * sr
hop_size = 4 * sr
all_estimates = []
# 滑动窗口处理
start_idx = 0
while start_idx < len(mix):
end_idx = min(start_idx + window_size, len(mix))
window_mix = mix[start_idx:end_idx]
start_frame = int(start_idx / sr * 25)
end_frame = int(end_idx / sr * 25)
end_frame = min(end_frame, len(mouth_roi))
window_mouth_roi = mouth_roi[start_frame:end_frame]
est_sources = audiomodel(window_mix[None],
torch.from_numpy(window_mouth_roi[None, None]).float().cuda())
all_estimates.append({
'start': start_idx,
'end': end_idx,
'estimate': est_sources[0].cpu()
})
start_idx += hop_size
if start_idx >= len(mix):
break
output_length = len(mix)
merged_output = torch.zeros(1, output_length)
weights = torch.zeros(output_length)
for est in all_estimates:
window_len = est['end'] - est['start']
hann_window = torch.hann_window(window_len)
merged_output[0, est['start']:est['end']] += est['estimate'][0, :window_len] * hann_window
weights[est['start']:est['end']] += hann_window
merged_output[:, weights > 0] /= weights[weights > 0]
torchaudio.save(os.path.join(output_path, f"speaker{i+1}_est.wav"), merged_output, sr)
# Merge video with separated audio for each speaker
output_files = []
for i in range(number_of_speakers):
video_input = os.path.join(output_path, f"video_tracked{i+1}.mp4")
audio_input = os.path.join(output_path, f"speaker{i+1}_est.wav")
video_output = os.path.join(output_path, f"s{i+1}.mp4")
merge_video_audio(video_input, audio_input, video_output)
output_files.append(video_output)
# Clean up temporary file
if os.path.exists(temp_25fps_file):
os.remove(temp_25fps_file)
return output_files
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Video Speaker Separation using Dolphin model')
parser.add_argument('--input', '-i', type=str, required=True,
help='Path to input video file')
parser.add_argument('--output', '-o', type=str, default=None,
help='Output directory path (default: creates directory based on input filename)')
parser.add_argument('--speakers', '-s', type=int, default=2,
help='Number of speakers to separate (default: 2)')
parser.add_argument('--detect-every-n', type=int, default=8,
help='Detect faces every N frames (default: 8)')
parser.add_argument('--face-scale', type=float, default=1.5,
help='Face detection bounding box scale factor (default: 1.5)')
parser.add_argument('--cuda-device', type=int, default=0,
help='CUDA device ID to use (default: 0, set to -1 for CPU)')
parser.add_argument('--config', type=str, default="checkpoints/vox2/conf.yml",
help='Path to model configuration file')
args = parser.parse_args()
# 验证输入文件是否存在
if not os.path.exists(args.input):
print(f"Error: Input file '{args.input}' does not exist")
exit(1)
# 如果没有指定输出路径,基于输入文件名创建输出目录
if args.output is None:
input_basename = os.path.splitext(os.path.basename(args.input))[0]
args.output = os.path.join(os.path.dirname(args.input), input_basename + "_output")
# 设置CUDA设备
cuda_device = args.cuda_device if args.cuda_device >= 0 else None
print(f"Processing video: {args.input}")
print(f"Output directory: {args.output}")
print(f"Number of speakers: {args.speakers}")
print(f"CUDA device: {cuda_device if cuda_device is not None else 'CPU'}")
# 处理视频
output_files = process_video(
input_file=args.input,
output_path=args.output,
number_of_speakers=args.speakers,
detect_every_N_frame=args.detect_every_n,
scalar_face_detection=args.face_scale,
config_path=args.config,
cuda_device=cuda_device
)
print("\nProcessing completed!")
print("Output files:")
for i, output_file in enumerate(output_files):
print(f" Speaker {i+1}: {output_file}")
|