File size: 6,086 Bytes
07b52c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f957c43
 
07b52c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import gradio as gr
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.impute import SimpleImputer
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor, GradientBoostingClassifier, GradientBoostingRegressor
from sklearn.linear_model import LogisticRegression, LinearRegression, Ridge
from sklearn.svm import SVC, SVR
from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor
from sklearn.metrics import classification_report, mean_squared_error, r2_score, precision_score, recall_score, f1_score
from io import StringIO
import requests

# Helper functions
def load_data(file=None, url=None):
    if url:
        content = requests.get(url).content.decode('utf-8')
        df = pd.read_csv(StringIO(content))
    else:
        df = pd.read_csv(file.name)
    return df

def basic_eda(df):
    info = {
        "Shape": df.shape,
        "Columns": df.columns.tolist(),
        "Missing Values": df.isnull().sum().to_dict(),
        "Data Types": df.dtypes.astype(str).to_dict(),
        "Description": df.describe(include='all').to_dict(),
    }
    return info

def impute_missing(df):
    num_cols = df.select_dtypes(include=np.number).columns.tolist()
    cat_cols = df.select_dtypes(exclude=np.number).columns.tolist()

    if num_cols:
        imputed = SimpleImputer(strategy='mean').fit_transform(df[num_cols])
        df[num_cols] = pd.DataFrame(imputed, columns=num_cols, index=df.index)
    if cat_cols:
        imputed = SimpleImputer(strategy='most_frequent').fit_transform(df[cat_cols])
        df[cat_cols] = pd.DataFrame(imputed, columns=cat_cols, index=df.index)

    return df

def detect_outliers(df):
    numeric_df = df.select_dtypes(include=np.number)
    z_scores = (numeric_df - numeric_df.mean()) / numeric_df.std()
    return df[(z_scores < 3).all(axis=1)]

def train_models(df, target, task):
    X = df.drop(columns=[target])
    y = df[target]

    X = pd.get_dummies(X)
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

    results_table = []

    if task == 'classification':
        models = [
            RandomForestClassifier(),
            LogisticRegression(max_iter=1000),
            GradientBoostingClassifier(),
            KNeighborsClassifier(),
            SVC()
        ]
        for model in models:
            model.fit(X_train, y_train)
            y_train_pred = model.predict(X_train)
            y_test_pred = model.predict(X_test)
            results_table.append({
                "Model": model.__class__.__name__,
                "Train Precision": precision_score(y_train, y_train_pred, average='weighted', zero_division=0),
                "Train Recall": recall_score(y_train, y_train_pred, average='weighted', zero_division=0),
                "Train F1-Score": f1_score(y_train, y_train_pred, average='weighted', zero_division=0),
                "Test Precision": precision_score(y_test, y_test_pred, average='weighted', zero_division=0),
                "Test Recall": recall_score(y_test, y_test_pred, average='weighted', zero_division=0),
                "Test F1-Score": f1_score(y_test, y_test_pred, average='weighted', zero_division=0)
            })

    else:
        models = [
            RandomForestRegressor(),
            LinearRegression(),
            GradientBoostingRegressor(),
            KNeighborsRegressor(),
            Ridge()
        ]
        for model in models:
            model.fit(X_train, y_train)
            y_train_pred = model.predict(X_train)
            y_test_pred = model.predict(X_test)
            r2_train = r2_score(y_train, y_train_pred)
            r2_test = r2_score(y_test, y_test_pred)
            adj_r2_train = 1 - (1 - r2_train) * ((len(y_train) - 1)/(len(y_train) - X_train.shape[1] - 1))
            adj_r2_test = 1 - (1 - r2_test) * ((len(y_test) - 1)/(len(y_test) - X_test.shape[1] - 1))
            rmse_train = np.sqrt(mean_squared_error(y_train, y_train_pred))
            rmse_test = np.sqrt(mean_squared_error(y_test, y_test_pred))
            results_table.append({
                "Model": model.__class__.__name__,
                "Train R2": round(r2_train, 4),
                "Train Adjusted R2": round(adj_r2_train, 4),
                "Train RMSE": round(rmse_train, 4),
                "Test R2": round(r2_test, 4),
                "Test Adjusted R2": round(adj_r2_test, 4),
                "Test RMSE": round(rmse_test, 4)
            })

    return pd.DataFrame(results_table)

def visualize(df, x_col, y_col):
    plt.figure(figsize=(8, 6))
    if y_col:
        sns.scatterplot(data=df, x=x_col, y=y_col)
    else:
        sns.histplot(df[x_col], kde=True)
    plt.tight_layout()
    plt.savefig("plot.png")
    plt.close()
    return "plot.png"

# Gradio UI
def process(file, url, task, target, x_feature, y_feature):
    df = load_data(file, url)
    eda = basic_eda(df)
    df = impute_missing(df)
    df = detect_outliers(df)
    plot_path = visualize(df, x_feature, y_feature)
    results_df = train_models(df, target, task)
    return eda, plot_path, results_df

demo = gr.Interface(
    fn=process,
    inputs=[
        gr.File(label="Upload CSV File", file_types=['.csv']), #optional=True),
        gr.Textbox(label="Or enter URL to CSV", placeholder="https://...", lines=1), #optional=True),
        gr.Radio(["classification", "regression"], label="Select Task Type"),
        gr.Textbox(label="Target Column Name"),
        gr.Textbox(label="Feature for X-Axis (for visualization)"),
        gr.Textbox(label="Feature for Y-Axis (optional, for scatter plot)"),
    ],
    outputs=[
        gr.JSON(label="Basic EDA"),
        gr.Image(type="filepath", label="Feature Plot"),
        gr.Dataframe(label="Model Performance")
    ],
    title="AutoML Dashboard",
    description="Upload a dataset or provide a URL. Select task type, enter target column, choose features to visualize, and evaluate models."
)

if __name__ == "__main__":
    demo.launch()