File size: 10,266 Bytes
70030b8
ca6133f
70030b8
 
9bdb26d
f75a860
9bdb26d
 
 
9334c2e
55365a8
22e71e9
17a2ec6
22e71e9
9bdb26d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22e71e9
433d823
 
9bdb26d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dd3f3d
707142e
2fab3b0
707142e
0dd3f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bdb26d
70030b8
64e9265
556bb4d
70030b8
291318b
 
556bb4d
70030b8
0dd3f3d
ca6133f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45376e5
 
 
 
 
 
0586ee3
 
0dd3f3d
0586ee3
55365a8
45376e5
 
 
 
36d6ca9
0586ee3
70030b8
45376e5
 
55365a8
 
 
0586ee3
 
55365a8
 
 
ca6133f
 
45376e5
55365a8
 
 
 
 
 
 
 
0586ee3
ca6133f
 
5d32525
0586ee3
 
 
 
 
 
ca6133f
b763faa
0586ee3
0dd3f3d
0586ee3
 
 
 
 
 
 
 
ca6133f
55365a8
0586ee3
b763faa
0586ee3
 
b763faa
5d32525
0586ee3
 
70030b8
5d32525
 
22e71e9
 
9da963f
8c64992
9da963f
 
22e71e9
9da963f
8c64992
9da963f
 
17a2ec6
9da963f
 
 
 
 
 
 
 
 
8c64992
0dd3f3d
9bdb26d
 
 
b7d2352
64e9265
9bdb26d
 
acd6e98
 
9bdb26d
acd6e98
 
9bdb26d
 
5d32525
 
 
 
 
 
 
 
 
 
 
 
 
70030b8
5d32525
 
70030b8
9bdb26d
 
 
 
581565d
 
 
 
 
 
 
9bdb26d
 
 
 
 
581565d
9bdb26d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import os
import re
import json
import base64
import gradio as gr
import random
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download, login
from collections import defaultdict
from datasets import Dataset, DatasetDict
from datasets import load_dataset
from huggingface_hub import HfApi
from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval

HF_DATASET_REPO = "JunJiaGuo/Vid_result"
HF_TOKEN = os.getenv("HF_TOKEN")
login(HF_TOKEN)

def restart_space():
    API.restart_space(repo_id=REPO_ID)

### Space initialisation
try:
    print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()
try:
    print(EVAL_RESULTS_PATH)
    snapshot_download(
        repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()


LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)

(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)

def init_leaderboard(dataframe):
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")
    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in fields(AutoEvalColumn)],
        select_columns=SelectColumns(
            default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
            cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
            label="Select Columns to Display:",
        ),
        search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
        hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
        filter_columns=[
            ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
            ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
            ColumnFilter(
                AutoEvalColumn.params.name,
                type="slider",
                min=0.01,
                max=150,
                label="Select the number of parameters (B)",
            ),
            ColumnFilter(
                AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
            ),
        ],
        bool_checkboxgroup_label="Hide models",
        interactive=False,
    )
    
current_dir = os.path.dirname(os.path.abspath(__file__))
print(current_dir)
CSV_FILE = os.path.join(current_dir, "acc.csv")

CLASS_LIST = [
    "script_matching", "plot_ordering", "background_perception", "scene_counting", "lighting_perception",
    "character_counting", "action_perception", "CMP_perception", "emotion_perception",
    "art_style", "special_effect", "cut_counting", "camera_movement", "camera_angle", "shot_size",
    "Narrative", "Scene", "Character", "Making", "Cinematography"
]

CATEGORY_MAPPING = {
    "Narrative": ["script_matching", "plot_ordering"],
    "Scene": ["background_perception", "scene_counting", "lighting_perception"],
    "Character": ["character_counting", "action_perception", "CMP_perception", "emotion_perception"],
    "Making": ["art_style", "special_effect", "cut_counting"],
    "Cinematography": ["camera_movement", "camera_angle", "shot_size"]
}


def load_id_answer_mapping():
    id_answer_mapping = os.getenv("ID_ANSWER_MAPPING") 
    if not id_answer_mapping:
        raise ValueError("ID_ANSWER_MAPPING secret not found!")
    # print(id_answer_mapping)
    # print(type(id_answer_mapping)) 
    return json.loads(id_answer_mapping)



def answer_matching(text):
    if isinstance(text, list):
        text = text[0] if text else random.choice(['A', 'B', 'C', 'D'])
    if not isinstance(text, str):
        return random.choice(['A', 'B', 'C', 'D'])
    
    patterns = [
        r'\((A|B|C|D)\)',
        r'^(A|B|C|D)[\s\W]*',
        r'\b[A-D]\b',
        r'\((a|b|c|d)\)',
        r'\b(A|B|C|D)\.',
    ]
    for pattern in patterns:
        match = re.search(pattern, text)
        if match:
            return match.group(1).upper()
    
    letters = re.findall(r'[a-zA-Z]', text)
    return letters[0].upper() if len(letters) == 1 else random.choice(['A', 'B', 'C', 'D'])


def evaluate_uploaded_json(
    user_file: str,
    model_name: str,
    multi_choice_file: str = "multi_choice.json",
):
    
    print(f"Model Name: {model_name}")
    print(f"Uploaded File: {user_file}")

    id_answer_mapping = load_id_answer_mapping()

    with open(multi_choice_file, "r", encoding="utf-8") as f:
        mc_data = json.load(f)
    id_class_mapping = {q["id"]: q["class"] for q in mc_data}

    with open(user_file, "r", encoding="utf-8") as f:
        user_data = json.load(f)


    
    correct = 0
    total = 0

    class_correct = defaultdict(int)
    class_total = defaultdict(int)

    for item in user_data:
        question_id = item["id"]
        raw_user_answer = item.get("model_answer", "")
        user_answer = answer_matching(raw_user_answer)
        question_class = id_class_mapping.get(question_id, "Unknown")

        class_total[question_class] += 1
        total += 1

        if id_answer_mapping.get(question_id) == user_answer:
            class_correct[question_class] += 1
            correct += 1

    subclass_data = []
    subclass_result = {}

    for cls in CLASS_LIST[:-5]:  
        acc = class_correct[cls] / class_total[cls] if class_total[cls] > 0 else 0
        subclass_data.append({
            "Subclass": cls,
            "Accuracy": f"{acc:.2%}",
            "Correct/Total": f"{class_correct[cls]}/{class_total[cls]}"
        })
        subclass_result[cls] = acc

    category_data = []
    for category, sub_classes in CATEGORY_MAPPING.items():
        cat_correct = sum(class_correct.get(sub_cls, 0) for sub_cls in sub_classes)
        cat_total = sum(class_total.get(sub_cls, 0) for sub_cls in sub_classes)
        acc = cat_correct / cat_total if cat_total > 0 else 0
        category_data.append({
            "Category": category,
            "Accuracy": f"{acc:.2%}",
            "Correct/Total": f"{cat_correct}/{cat_total}"
        })
        subclass_result[category] = acc

    overall_accuracy = f"{correct / total:.2%} ({correct}/{total} correct)"

    subclass_df = pd.DataFrame(subclass_data)
    category_df = pd.DataFrame(category_data)

    save_class_accuracy_to_hf_dataset(model_name, subclass_result)

    return overall_accuracy, category_df, subclass_df



def save_class_accuracy_to_hf_dataset(model_name, class_accuracy):

    new_data = {"Model Name": model_name}
    for cls in CLASS_LIST:
        new_data[cls] = class_accuracy.get(cls, 0)
    new_df = pd.DataFrame([new_data])

    try:

        dataset = load_dataset(HF_DATASET_REPO, split="train")
        existing_df = dataset.to_pandas()
        print(existing_df)

        updated_df = pd.concat([existing_df, new_df], ignore_index=True)
    except:

        updated_df = new_df


    updated_dataset = Dataset.from_pandas(updated_df)
    updated_dataset.push_to_hub(HF_DATASET_REPO, split="train", token=HF_TOKEN)



demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML('<h1 style="text-align: center;">Vid-Composition</h1>')
    # gr.Markdown("Vid-Composition", elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        # with gr.TabItem("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
        #     leaderboard = init_leaderboard(LEADERBOARD_DF)

        # with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
        #     gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
            with gr.Row():
                json_file = gr.File(label="Upload JSON File")
                model_name = gr.Textbox(label="Model Name", placeholder="Enter your model name here")
        
            with gr.Row():
                overall_acc = gr.Textbox(label="Overall Accuracy")
            
            with gr.Row():
                category_df = gr.Dataframe(label="Category Accuracy")
                subclass_df = gr.Dataframe(label="Subclass Accuracy")
        
            json_eval_button = gr.Button("Evaluate")
            json_eval_button.click(
                fn=evaluate_uploaded_json,
                inputs=[json_file, model_name],
                outputs=[overall_acc, category_df, subclass_df]
            )

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value="""@article{tang2024vidcompostion,
      title = {VidComposition: Can MLLMs Analyze Compositions in Compiled Videos?},
      author = {Tang, Yunlong and Guo, Junjia and Hua, Hang and Liang, Susan and Feng, Mingqian and Li, Xinyang and Mao, Rui and Huang, Chao and Bi, Jing and Zhang, Zeliang and Fazli, Pooyan and Xu, Chenliang},
      journal = {arXiv preprint arXiv:2411.10979},
      year = {2024}
    }""",
                label="BibTeX Citation",
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )


scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()